605 research outputs found

    The First Direct Distance and Luminosity Determination for a Self-Luminous Giant Exoplanet: The Trigonometric Parallax to 2MASS1207334-393254Ab

    Full text link
    We present the first trigonometric parallax and distance for a young planetary mass object. A likely TW Hya cluster member, 2MASSW J1207334-393254Ab (hereafter 2M1207Ab) is an M8 brown dwarf with a mid to late L type planetary mass companion. Recent observations of spectral variability have uncovered clear signs of disk accretion and outflow, constraining the age of the system to <10 Myr. Because of its late spectral type and the clearly youthful nature of the system, 2M1207b is very likely a planetary mass object. We have measured the first accurate distance and luminosity for a self-luminous planetary mass object. Our parallax measurements are accurate to <2 mas (1sigma) for 2M1207Ab. With 11 total epochs of data taken from January 2006 through April 2 007 (475 images for 2M1207Ab), we determine a distance of 58.8+-7.0 pc (17.0{+2.3}{-1.8} mas, 1.28sigma) to 2M1207Ab and a calculated luminosity of 0.68-2.2x10^-5 Lsun for 2M1207b. Hence 2M1207Ab is a clear member of the TW Hya cluster in terms of its distance, proper motions, and youthful nature. However, as previously noted by Mohanty and co-workers, 2M1207b's luminosity appears low compared to its temperature according to evolutionary models.Comment: 12 pages, 3 figures, accepted to ApJ Letter

    SSSPM J1444-2019: an extremely high proper motion, ultracool subdwarf

    Full text link
    We present the discovery of a new extreme high proper motion object (3.5 arcsec/year) which we classify as an ultracool subdwarf with [M/H] = -0.5. It has a formal spectral type of sdM9 but also shows L-type features: while the VO bands are completely absent, it exhibits extremely strong TiO absorption in its optical spectrum. With a radial velocity of about -160 km/s and a rough distance estimate of 16--24 pc, it is likely one of the nearest halo members crossing the Solar neighbourhood with a heliocentric space velocity of (U,V,W)=(-244,-256,-100)+/-(32,77,6) km/s.Comment: 4 pages, 4 figures (Fig.1a-d available as jpg files), accepted for publication in Astronomy & Astrophysics Letter

    Image Analysis for Facility Siting: a Comparison of Lowand High-altitude Image Interpretability for Land Use/land Cover Mapping

    Get PDF
    For two test sites in Pennsylvania the interpretability of commercially acquired low-altitude and existing high-altitude aerial photography are documented in terms of time, costs, and accuracy for Anderson Level II land use/land cover mapping. Information extracted from the imagery is to be used in the evaluation process for siting energy facilities. Land use/land cover maps were drawn at 1:24,000 scale using commercially flown color infrared photography obtained from the United States Geological Surveys' EROS Data Center. Detailed accuracy assessment of the maps generated by manual image analysis was accomplished employing a stratified unaligned adequate class representation. Both 'area-weighted' and 'by-class' accuracies were documented and field-verified. A discrepancy map was also drawn to illustrate differences in classifications between the two map scales. Results show that the 1:24,000 scale map set was more accurate (99% to 94% area-weighted) than the 1:62,500 scale set, especially when sampled by class (96% to 66%). The 1:24,000 scale maps were also more time-consuming and costly to produce, due mainly to higher image acquisition costs

    Infrared Spectra and Spectral Energy Distributions of Late-M- and L-Dwarfs

    Get PDF
    We have obtained 1.0-2.5um spectra at R~600 of 14 disk dwarfs with spectral types M6 to L7. For four of the dwarfs we have also obtained infrared spectra at R~3000 in narrow intervals. In addition, we present new L' photometry for four of the dwarfs in the sample, which allows improved determinations of their bolometric luminosities. We resolve the L-dwarf Denis-P J 0205-1159 into an identical pair of objects separated by 0.35". The spectra, with the published energy distribution for one other dwarf, are compared to synthetic spectra generated by upgraded model atmospheres. Good matches are found for 2200> Teff K>1900 (spectral types around M9 to L3), but discrepancies exist at Teff> 2300 K (M8) and for Teff<1800 K (L4-L7). At the higher temperatures the mismatches are due to incompleteness in the water vapor linelist. At the lower temperatures the disagreement is probably due to our treatment of dust: we assume a photospheric distribution in equilibrium with the gas phase. We derive effective temperatures for the sample from the comparison with synthetic spectra and also by comparing our observed total intrinsic luminosities to structural model calculations (which are mostly independent of the atmosphere but are dependent on the unknown masses and ages of the targets). The two derivations agree to ~200 K except for the faintest object in the sample where the discrepancy is larger. Agreement with other temperature determinations is also ~200 K, except for the L7 dwarf.Comment: 31 pages incl. 5 Tables and 12 Figures, accepted by ApJ for Feb 2001 issu

    Planetary Formation Scenarios Revistied: Core-Accretion Versus Disk Instability

    Full text link
    The core-accretion and disk instability models have so far been used to explain planetary formation. These models have different conditions, such as planet mass, disk mass, and metallicity for formation of gas giants. The core-accretion model has a metallicity condition ([Fe/H] > &#8722;1.17 in the case of G-type stars), and the mass of planets formed is less than 6 times that of the Jupiter mass MJ. On the other hand, the disk instability model does not have the metallicity condition, but requires the disk to be 15 times more massive compared to the minimum mass solar nebulae model. The mass of planets formed is more than 2MJ. These results are compared to the 161 detected planets for each spectral type of the central stars. The results show that 90% of the detected planets are consistent with the core-accretion model regardless of the spectral type. The remaining 10% are not in the region explained by the core-accretion model, but are explained by the disk instability model. We derived the metallicity dependence of the formation probability of gas giants for the core-accretion model. Comparing the result with the observed fraction having gas giants, they are found to be consistent. On the other hand, the observation cannot be explained by the disk instability model, because the condition for gas giant formation is independent of the metallicity. Consequently, most of planets detected so far are thought to have been formed by the core-accretion process, and the rest by the disk instability process.Comment: accepted for publication in The Astrophysical Journa

    Search for nearby stars among proper motion stars selected by optical-to-infrared photometry. II. Two late M dwarfs within 10 pc

    Get PDF
    We have identified two late M dwarfs within 10 parsecs of the Sun, by cross-correlating the Luyten NLTT catalogue of stars with proper motions larger than 0.18 arcsec/yr, with objects lacking optical identification in the 2MASS data base. The 2MASS photometry was then combined with improved optical photometry obtained from the SuperCOSMOS Sky Surveys. The two objects (LP775-31 and LP655-48) have extremely red optical-to-infrared colours ((R-K)~7) and very bright infrared magnitudes (K_s<10): follow-up optical spectroscopy with the ESO 3.6-m telescope gave spectral types of M8.0 and M7.5 dwarfs, respectively. Comparison of their near-infrared magnitudes with the absolute magnitudes of known M8 and M7.5 dwarfs with measured trigonometric parallaxes yields spectroscopic distance estimates of 6.4+/-1.4 parsecs and 8.0+/-1.6 parsecs for LP775-31 and LP655-48, respectively. In contrast, Cruz & Reid (2002) recently determined spectral types of M6 for both objects, and commensurately larger distances of 11.3+/-1.3 parsecs and 15.3+/-2.6 parsecs. LP655-48 is also a bright X-ray source (1RXS J044022.8-053020). With only a few late M dwarfs previously known within 10 parsecs, these two objects represent an important addition to the census of the Solar neighbourhood.Comment: Astronomy & Astrophysics (Letters), in press; 5 pages, 1 figure, uses aa.cls version 5.

    2MASS J03105986+1648155AB - A new binary at the L/T transition

    Full text link
    The transition from the L to the T spectral type of brown dwarfs is marked by a very rapid transition phase, remarkable brightening in the J-band and a higher binary frequency. Despite being an active area of inquiry, this transition regime still remains one of the most poorly understood phases of brown dwarf evolution. We resolved the L dwarf 2MASS J03105986+1648155 for the first time into two almost equally bright components straddling the L/T transition. Since such a co-eval system with common age and composition provides crucial information of this special transition phase, we monitored the system over 3 years to derive first orbital parameters and dynamical mass estimates, as well as a spectral type determination. We obtained resolved high angular resolution, near-IR images with HST and the adaptive optics instrument NACO at the VLT including the laser guide star system PARSEC. Based on two epochs of astrometric data we derive a minimum semi-major axis of 5.2 +- 0.8 AU. The assumption of a face-on circular orbit yields an orbital period of 72 +- 4 years and a total system mass of 30-60 Mjup. This places the masses of the individual components of the system at the lower end of the mass regime of brown dwarfs. The achieved photometry allowed a first spectral type determination of L9 +- 1 for each component. In addition, this seems to be only the fifth resolved L/T transition binary with a flux reversal. While ultimate explanations for this effect are still owing, the 2MASS J03105986+1648155 system adds an important benchmark object for improving our understanding of this remarkable evolutionary phase of brown dwarfs. Additionally, the observational results of 2MASS J03105986+1648155 AB derived with the new PARSEC AO system at the VLT show the importance of this technical capability. The updated AO system allows us to significantly extend the sample of brown dwarfs observable with high-resolution from the ground and hence to reveal more of their physical properties.Comment: 6 pages, 2 figures, 3 tables, accepted for publication by A&

    Epsilon Indi B: a new benchmark T dwarf

    Full text link
    We have identified a new early T dwarf only 3.6pc from the Sun, as a common proper motion companion (separation 1459AU) to the K5V star Epsilon Indi (HD209100). As such, Epsilon Indi B is one of the highest proper motion sources outside the solar system (~4.7 arcsec/yr), part of one of the twenty nearest stellar systems, and the nearest brown dwarf to the Sun. Optical photometry obtained from the SuperCOSMOS Sky Survey was combined with approximate infrared photometry from the 2MASS Quicklook survey data release, yielding colours for the source typical of early T dwarfs. Follow up infrared spectroscopy using the ESO NTT and SOFI confirmed its spectral type to be T2.5+/-0.5. With Ks=11.2, Epsilon Indi B is 1.7 magnitudes brighter than any previously known T dwarf and 4 magnitudes brighter than the typical object in its class, making it highly amenable to detailed study. Also, as a companion to a bright nearby star, it has a precisely known distance (3.626pc) and relatively well-known age (0.8-2Gyr), allowing us to estimate its luminosity as logL/Lsun=-4.67, its effective temperature as 1260K, and its mass as ~40-60Mjup. Epsilon Indi B represents an important addition to the census of the Solar neighbourhood and, equally importantly, a new benchmark object in our understanding of substellar objects.Comment: Accepted by A&A (Letters); 5 pages, 3 figure
    • …
    corecore