11 research outputs found

    Axial Flow over a Blunt Circular Cylinder with and without Shear Layer Reattachment

    Get PDF
    Flow over a circular cylinder with its axis aligned with the free stream was investigated experimentally. Both upstream and downstream faces of the cylinder are sharply truncated. The fineness ratio (length to diameter ratio) was varied and the behavior of the leading-edge separating shear layer and its effect on the wake were studied in water using both flow visualization and PIV techniques. For the moderately large fineness ratio, the shear layer reattaches with subsequent boundary layer growth, whereas over a shorter cylinder the shear layer remains detached. This causes differences in the wake recirculation region and the immediate wake patterns. The shear layer structure was analyzed using the proper orthogonal decomposition (POD). The model in the water channel was sting-mounted and in some cases the effect of model support was detected in the wake measurements. To avoid such disturbance from the model support, an experiment was initiated in air using a magnetic model support and balance system. The drag variation with fineness ratio is presented and discussed in light of the flowfield measurements

    TOI-677b: A Warm Jupiter (P = 11.2 days) on an Eccentric Orbit Transiting a Late F-type Star

    Get PDF
    We report the discovery of TOI-677 b, first identified as a candidate in light curves obtained within Sectors 9 and 10 of the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed with radial velocities. TOI-677 b has a mass of The host star has a mass of a radius of Gyr and solar metallicity, properties consistent with a main-sequence late-F star with K. We find evidence in the radial velocity measurements of a secondary long-term signal, which could be due to an outer companion. The TOI-677 b system is a well-suited target for Rossiter-Mclaughlin observations that can constrain migration mechanisms of close-in giant planets

    TOI-481 b and TOI-892 b: Two Long-period Hot Jupiters from the Transiting Exoplanet Survey Satellite

    Get PDF
    We present the discovery of two new 10 day period giant planets from the Transiting Exoplanet Survey Satellite mission, whose masses were precisely determined using a wide diversity of ground-based facilities. TOI-481 b and TOI-892 b have similar radii (0.99 0.01 and 1.07 0.02, respectively), and orbital periods (10.3311 days and 10.6266 days, respectively), but significantly different masses (1.53 0.03, respectively). Both planets orbit metal-rich stars ( = dex and = for TOI-481 and TOI-892, respectively) but at different evolutionary stages. TOI-481 is a = 1.14 0.02 = 1.66 0.02 G-type star (=K), that with an age of 6.7 Gyr, is in the turn-off point of the main sequence. TOI-892 on the other hand, is a F-type dwarf star (=K), which has a mass of = 1.28 0.03 and a radius of = 1.39 0.02. TOI-481 b and TOI-892 b join the scarcely populated region of transiting gas giants with orbital periods longer than 10 days, which is important to constrain theories of the formation and structure of hot Jupiters

    TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images

    Get PDF
    We present the discovery and characterization of five hot and warm Jupiters - TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960) - based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R P = 1.01-1.77 R J) and have masses that range from 0.85 to 6.33 M J. The host stars of these systems have F and G spectral types (5595 ≤ T eff ≤ 6460 K) and are all relatively bright (9.5 1.7 R J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31-0.30+0.28 M J and a statistically significant, nonzero orbital eccentricity of e = 0.074-0.022+0.021. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals

    Velocity Measurements in A Ship Airwake With Crosswind

    No full text

    Identifying the most energetic modes of the pressure near-field region of a Mach 0.85 axisymmetric jet

    No full text

    An experimental analysis of the modal characteristics intrinsic to both the heated and cold jet

    No full text
    corecore