4 research outputs found
Exploring the Boundaries of GPT-4 in Radiology
The recent success of general-domain large language models (LLMs) has
significantly changed the natural language processing paradigm towards a
unified foundation model across domains and applications. In this paper, we
focus on assessing the performance of GPT-4, the most capable LLM so far, on
the text-based applications for radiology reports, comparing against
state-of-the-art (SOTA) radiology-specific models. Exploring various prompting
strategies, we evaluated GPT-4 on a diverse range of common radiology tasks and
we found GPT-4 either outperforms or is on par with current SOTA radiology
models. With zero-shot prompting, GPT-4 already obtains substantial gains
( 10% absolute improvement) over radiology models in temporal sentence
similarity classification (accuracy) and natural language inference ().
For tasks that require learning dataset-specific style or schema (e.g. findings
summarisation), GPT-4 improves with example-based prompting and matches
supervised SOTA. Our extensive error analysis with a board-certified
radiologist shows GPT-4 has a sufficient level of radiology knowledge with only
occasional errors in complex context that require nuanced domain knowledge. For
findings summarisation, GPT-4 outputs are found to be overall comparable with
existing manually-written impressions.Comment: EMNLP 2023 mai
Toward structuring real-world data: Deep learning for extracting oncology information from clinical text with patient-level supervision.
Most detailed patient information in real-world data (RWD) is only consistently available in free-text clinical documents. Manual curation is expensive and time consuming. Developing natural language processing (NLP) methods for structuring RWD is thus essential for scaling real-world evidence generation. We propose leveraging patient-level supervision from medical registries, which are often readily available and capture key patient information, for general RWD applications. We conduct an extensive study on 135,107 patients from the cancer registry of a large integrated delivery network (IDN) comprising healthcare systems in five western US states. Our deep-learning methods attain test area under the receiver operating characteristic curve (AUROC) values of 94%-99% for key tumor attributes and comparable performance on held-out data from separate health systems and states. Ablation results demonstrate the superiority of these advanced deep-learning methods. Error analysis shows that our NLP system sometimes even corrects errors in registrar labels