2 research outputs found

    Stemness Analysis Uncovers That The Peroxisome Proliferator-Activated Receptor Signaling Pathway Can Mediate Fatty Acid Homeostasis In Sorafenib-Resistant Hepatocellular Carcinoma Cells

    Get PDF
    Hepatocellular carcinoma (HCC) stem cells are regarded as an important part of individualized HCC treatment and sorafenib resistance. However, there is lacking systematic assessment of stem-like indices and associations with a response of sorafenib in HCC. Our study thus aimed to evaluate the status of tumor dedifferentiation for HCC and further identify the regulatory mechanisms under the condition of resistance to sorafenib. Datasets of HCC, including messenger RNAs (mRNAs) expression, somatic mutation, and clinical information were collected. The mRNA expression-based stemness index (mRNAsi), which can represent degrees of dedifferentiation of HCC samples, was calculated to predict drug response of sorafenib therapy and prognosis. Next, unsupervised cluster analysis was conducted to distinguish mRNAsi-based subgroups, and gene/geneset functional enrichment analysis was employed to identify key sorafenib resistance-related pathways. In addition, we analyzed and confirmed the regulation of key genes discovered in this study by combining other omics data. Finally, Luciferase reporter assays were performed to validate their regulation. Our study demonstrated that the stemness index obtained from transcriptomic is a promising biomarker to predict the response of sorafenib therapy and the prognosis in HCC. We revealed the peroxisome proliferator-activated receptor signaling pathway (the PPAR signaling pathway), related to fatty acid biosynthesis, that was a potential sorafenib resistance pathway that had not been reported before. By analyzing the core regulatory genes of the PPAR signaling pathway, we identified four candidate target genes, retinoid X receptor beta (RXRB), nuclear receptor subfamily 1 group H member 3 (NR1H3), cytochrome P450 family 8 subfamily B member 1 (CYP8B1) and stearoyl-CoA desaturase (SCD), as a signature to distinguish the response of sorafenib. We proposed and validated that the RXRB and NR1H3 could directly regulate NR1H3 and SCD, respectively. Our results suggest that the combined use of SCD inhibitors and sorafenib may be a promising therapeutic approach

    MicrobiotaProcess: A comprehensive R package for deep mining microbiome

    No full text
    The data output from microbiome research is growing at an accelerating rate, yet mining the data quickly and efficiently remains difficult. There is still a lack of an effective data structure to represent and manage data, as well as flexible and composable analysis methods. In response to these two issues, we designed and developed the MicrobiotaProcess package. It provides a comprehensive data structure, MPSE, to better integrate the primary and intermediate data, which improves the integration and exploration of the downstream data. Around this data structure, the downstream analysis tasks are decomposed and a set of functions are designed under a tidy framework. These functions independently perform simple tasks and can be combined to perform complex tasks. This gives users the ability to explore data, conduct personalized analyses, and develop analysis workflows. Moreover, MicrobiotaProcess can interoperate with other packages in the R community, which further expands its analytical capabilities. This article demonstrates the MicrobiotaProcess for analyzing microbiome data as well as other ecological data through several examples. It connects upstream data, provides flexible downstream analysis components, and provides visualization methods to assist in presenting and interpreting results
    corecore