43 research outputs found

    Understanding Translationese in Cross-Lingual Summarization

    Full text link
    Given a document in a source language, cross-lingual summarization (CLS) aims at generating a concise summary in a different target language. Unlike monolingual summarization (MS), naturally occurring source-language documents paired with target-language summaries are rare. To collect large-scale CLS data, existing datasets typically involve translation in their creation. However, the translated text is distinguished from the text originally written in that language, i.e., translationese. In this paper, we first confirm that different approaches of constructing CLS datasets will lead to different degrees of translationese. Then we systematically investigate how translationese affects CLS model evaluation and performance when it appears in source documents or target summaries. In detail, we find that (1) the translationese in documents or summaries of test sets might lead to the discrepancy between human judgment and automatic evaluation; (2) the translationese in training sets would harm model performance in real-world applications; (3) though machine-translated documents involve translationese, they are very useful for building CLS systems on low-resource languages under specific training strategies. Lastly, we give suggestions for future CLS research including dataset and model developments. We hope that our work could let researchers notice the phenomenon of translationese in CLS and take it into account in the future.Comment: Accepted to the Findings of EMNLP 202

    Evaluation of passenger comfort with road field test multi-axis vibration

    Get PDF
    Using objective vibration evaluation to produce results highly consistent with real road ride comfort is challenging. The deficiencies in traditional evaluation indices, adopting an average operator, maximum operator, or cumulative operator as the main vibration information integration logic, are reported here through 19 designed road field tests in which major vibration information distribution covers all axes and vibration information is distributed in spacetime in various patterns. A new evaluation index which adopted a combination of maximum and cumulative operator is proposed to overcome these deficiencies and an interactive mechanism which standardized the process of selecting vibration information distributed among axes and spacetime is devised between the localized major vibrations. The results show that the proposed road ride comfort evaluation index is more consistent and accurate than the evaluation indices proposed by ISO 2631-1 and can be used more generally

    Crystal Structure of a Novel Esterase Rv0045c from Mycobacterium tuberculosis

    Get PDF
    There are at least 250 enzymes in Mycobacterium tuberculosis (M. tuberculosis) involved in lipid metabolism. Some of the enzymes are required for bacterial survival and full virulence. The esterase Rv0045c shares little amino acid sequence similarity with other members of the esterase/lipase family. Here, we report the 3D structure of Rv0045c. Our studies demonstrated that Rv0045c is a novel member of α/β hydrolase fold family. The structure of esterase Rv0045c contains two distinct domains: the α/β fold domain and the cap domain. The active site of esterase Rv0045c is highly conserved and comprised of two residues: Ser154 and His309. We proposed that Rv0045c probably employs two kinds of enzymatic mechanisms when hydrolyzing C-O ester bonds within substrates. The structure provides insight into the hydrolysis mechanism of the C-O ester bond, and will be helpful in understanding the ester/lipid metabolism in M. tuberculosis

    A temperature-sensitive plugging material composed of shape memory polymer and self-made gel

    No full text
    Polymers with shape memory property and gel with resistance to high temperature can be both used for plugging formation, but they also have shortcomings. Nevertheless, it is possible to mix shape memory polymer(SMP) particles in the gel solution and use formation temperature to stimulate them to complete morphological transformation to achieve the purpose of plugging. This mutual combination method can help them reduce the shortcomings between each other. Here, a series of SMP with different glass transition temperatures and self-made gel were prepared. SMP needs to be prepared into particles to meet the dimensional requirements of plugging materials, but it can also retain shape memory property and pressure bearing capacity. The composition and thermal properties of both SMP and gel were characterized by FTIR and DMA. The plugging performance and mechanism of the composite of SMP and gel were systematically studied. The results show that the addition of SMP could improve the mechanical strength in system, and the viscosity gel can help stabilize the bridging structure formed by SMP particles at cracks. This composite of SMP and gel is expected to be a potential plugging material

    Optimization of Continuous Berth Scheduling by Taking into Account Double-Line Ship Mooring

    No full text
    “Double-Line Ship Mooring” (DLSM) mode has been applied as an initiative operation mode for solving berth allocation problems (BAP) in certain giant container terminals in China. In this study, a continuous berth scheduling problem with the DLSM model is illustrated and solved with exact and heuristic methods with an objective to minimize the total operation cost, including both the additional transportation cost for vessels not located at their minimum-cost berthing position and the penalties for vessels not being able to leave as planned. First of all, this problem is formulated as a mixed-integer programming model and solved by the CPLEX solver for small-size instances. Afterwards, a particle swarm optimization (PSO) algorithm is developed to obtain good quality solutions within reasonable execution time for large-scale problems. Experimental results show that DLSM mode can not only greatly reduce the total operation cost but also significantly improve the efficiency of berth scheduling in comparison with the widely used single-line ship mooring (SLSM) mode. The comparison made between the results obtained by the proposed PSO algorithm and that obtained by the CPLEX solver for both small-size and large-scale instances are also quite encouraging. To sum up, this study can not only validate the effectiveness of DLSM mode for heavy-loaded ports but also provide a powerful decision support tool for the port operators to make good quality berth schedules with the DLSM mode

    Biobjective Optimization-Based Frequency Regulation of Power Grids with High-Participated Renewable Energy and Energy Storage Systems

    No full text
    Large-scale renewable energy sources connected to the grid bring new problems and challenges to the automatic generation control (AGC) of the power system. In order to improve the dynamic response performance of AGC, a biobjective of complementary control (BOCC) with high-participation of energy storage resources (ESRs) is established, with the minimization of total power deviation and the minimization of regulation mileage payment. To address this problem, the strength Pareto evolutionary algorithm is employed to quickly acquire a high-quality Pareto front for BOCC. Based on the entropy weight method (EWM), grey target decision-making theory is designed to choose a compromise dispatch scheme that takes both of the operating economy and power quality into account. At last, an extended two-area load frequency control (LFC) model with seven AGC units is taken to verify the effectiveness and the performance of the proposed method

    Computational Investigations of a pH-Induced Structural Transition in a CTAB Solution with Toluic Acid

    No full text
    In this work, molecular dynamics simulations were performed to study the pH-induced structural transitions for a CTAB/p-toluic acid solution. Spherical and cylindrical micelles were obtained for aqueous surfactants at pH 2 and 7, respectively, which agrees well with the experimental observations. The structural properties of two different micelles were analyzed through the density distributions of components and the molecular orientations of CTA+ and toluic acid inside the micelles. It was found that the bonding interactions between CTA+ and toluic in spherical and cylindrical micelles are very different. Almost all the ionized toluic acid (PTA−) in the solution at pH 7 was solubilized into the micelles, and it was located in the CTA+ headgroups region. Additionally, the bonding between surfactant CTA+ and PTA− was very tight due to the electrostatic interactions. The PTA− that penetrated into the micelles effectively screened the electrostatic repulsion among the cationic headgroups, which is considered to be crucial for maintaining the cylindrical micellar shape. As the pH decreased, the carboxyl groups were protonated. The hydration ability of neutral carboxyl groups weakened, resulting in deeper penetration into the micelles. Meanwhile, their bonding interactions with surfactant headgroups also weakened. Accompanied by the strengthen of electrostatic repulsion among the positive headgroups, the cylindrical micelle was broken into spherical micelles. Our work provided an atomic-level insights into the mechanism of pH-induced structural transitions of a CTAB/p-toluic solution, which is expected to be useful for further understanding the aggregate behavior of mixed cationic surfactants and aromatic acids

    Characterization of a novel esterase Rv0045c from Mycobacterium tuberculosis.

    Get PDF
    It was proposed that there are at least 250 enzymes in M. tuberculosis involved in lipid metabolism. Rv0045c was predicted to be a hydrolase by amino acid sequence similarity, although its precise biochemical characterization and function remained to be defined.We expressed the Rv0045c protein to high levels in E. coli and purified the protein to high purity. We confirmed that the prepared protein was the Rv0045c protein by mass spectrometry analysis. Circular dichroism spectroscopy analysis showed that the protein possessed abundant β-sheet secondary structure, and confirmed that its conformation was stable in the range pH 6.0-10.0 and at temperatures ≤ 40 °C. Enzyme activity analysis indicated that the Rv0045c protein could efficiently hydrolyze short chain p-nitrophenyl esters (C₂-C₈), and its suitable substrate was p-nitrophenyl caproate (C₆) with optimal catalytic conditions of 39 °C and pH 8.0.Our results demonstrated that the Rv0045c protein is a novel esterase. These experiments will be helpful in understanding ester/lipid metabolism related to M. tuberculosis
    corecore