209 research outputs found

    The relationship between activated H2 bond length and adsorption distance on MXenes identified with graph neural network and resonating valence bond theory

    Full text link
    Motivated by the recent experimental study on hydrogen storage in MXene multilayers [Nature Nanotechnol. 2021, 16, 331], for the first time we propose a workflow to computationally screen 23,857 compounds of MXene to explore the general relation between the activated H2 bond length and adsorption distance. By using density functional theory (DFT), we generate a dataset to investigate the adsorption geometries of hydrogen on MXenes, based on which we train physics-informed atomistic line graph neural networks (ALIGNNs) to predict adsorption parameters. To fit the results, we further derived a formula that quantitatively reproduces the dependence of H2 bond length on the adsorption distance from MXenes within the framework of Pauling's resonating valence bond (RVB) theory, revealing the impact of transition metal's ligancy and valence on activating dihydrogen in H2 storage

    Overexpression of ERBB-2 was more frequently detected in malignant than benign pheochromocytomas by multiplex ligation-dependent probe amplification and immunohistochemistry

    Get PDF
    To analyze the genetic alterations of pheochromocytomas and evaluate the difference among malignant, extra-adrenal, and benign pheochromocytomas. Forty-three tumor samples were tested for genetic changes using multiplex ligation-dependent probe amplification. Among them, 39 samples were available for protein expression analysis by immunohistochemistry (IHC). All 43 patients (24 women and 19 men; mean age 44.6±13.6 years; range 18–75 years; 9 with malignant, 7 extra-adrenal, and 27 benign) showed multiple copy number losses or gains. The average copy number change was 13.10 in malignant, 13.93 in benign, and 13.47 in paraganglioma patients. There is no significant difference among the three groups of pheochromocytomas. However, we discovered that in the malignant pheochromocytomas, 6 of the 9 patients (67%) showed erythroblastic leukemia viral oncogene homolog 2 (ERBB-2) oncogene gain, whereas only 12 of the 34 (35%) identified change in the benign and extra-adrenal pheochromocytomas. Further, IHC confirmed that ERBB-2-positive staining was more frequent and stronger in malignant pheochromocytomas than in benign and extra-adrenal pheochromocytomas. Our study illustrates the chromosomal changes of the whole genome of Chinese pheochromocytoma patients. The results suggest that there may be certain progression of genetic events that involves chromosomes 1p, 3p, 6p, 11q, 12q, 17q, and 19q in the development of pheochromocytomas, and the activation of ERBB-2 located on chromosome 17q is an important and early event in the malignancy development of these tumor types. The overexpression of ERBB-2 identified by IHC suggested that this oncogene could be associated with the malignancy of pheochromocytomas and paragangliomas

    Weighted gene co-expression network analysis and CIBERSORT screening of key genes related to m6A methylation in Hirschsprung’s disease

    Get PDF
    Hirschsprung’s disease (HSCR) is a neural crest disease that results from the failure of enteric neural crest cells (ENCCs) to migrate to the corresponding intestinal segment. The RET gene, which regulates enteric neural crest cell proliferation and migration, is considered one of the main risk factors for HSCR and is commonly used to construct HSCR mouse models. The epigenetic mechanism of m6A modification is involved in HSCR. In this study, we analyzed the GEO database (GSE103070) for differentially expressed genes (DEGs) and focused on m6A–related genes. Comparing the RNA-seq data of Wide Type and RET Null, a total of 326 DEGs were identified, of which 245 genes were associated with m6A. According to the CIBERSORT analysis, the proportion of Memory B-cell in RET Null was significantly higher than that of Wide Type. Venn diagram analysis was used to identify key genes in the selected memory B-cell modules and DEGs associated with m6A. Enrichment analysis showed that seven genes were mainly involved in focal adhesion, HIV infection, actin cytoskeleton organization and regulation of binding. These findings could provide a theoretical basis for molecular mechanism studies of HSCR

    Factors influencing the level of insight and treatment attitude: a cross-sectional study of 141 elderly patients of major depression in Guangzhou, China

    Get PDF
    ObjectiveTo explore the insight, treatment attitude, and related influencing factors of hospitalized elderly patients suffering from major depression.MethodsA total of 141 hospitalized elderly patients with depression were selected as the research objects. Insight was evaluated by the total score of the Insight and Treatment Attitude questionnaire (ITAQ). The data collected included sociodemographic characteristics, psychiatric symptoms, delirium status, social functioning, social support, suicide risk, and cognitive function.ResultsThe sample included 74.5% of female patients, and the mean age was 67.53 (sd=7.19) years. The influencing factors of inpatients with depression included alcohol consumption, length of hospitalization, admission types, and the main caregivers (P<0.05). The various factors were further analyzed by linear regression, revealing that the insight and treatment attitude of elderly depressed hospitalized patients were mainly related to the Mini-Mental State Examination (MMSE) (β= 0.225, 95% CI 0.055–0.395, P=0.01), dependent on a caregiver (β=-5.810, 95% CI -8.086~-3.535, P<0.001), the type of admission (involuntary admission) (β=-3.365, 95% CI -5.448~-1.283, P=0.002), Functional Activities Questionnaire (FAQ) (β=-0.156, 95% CI -0.303~-0.010, P=0.037), and length of stay (≤28 days) (β=2.272, 95% CI 0.055~-4.489, P=0.045).ConclusionThe level of insight was affected by cognitive function, involuntary admission, dependent on a caregiver, social function and length of stay. Future studies should focus on cognitive function recovery, observation of admission mode, and self-care ability in elderly patients with depression

    Effects of a low-sodium diet in patients with idiopathic hyperaldosteronism: a randomized controlled trial

    Get PDF
    BackgroundIdiopathic hyperaldosteronism (IHA) is one of the most common types of primary aldosteronism (PA), an important cause of hypertension. Although high dietary sodium is a major risk factor for hypertension, there is no consensus on the recommended dietary sodium intake for IHA.ObjectiveThis study investigated the effect of a low-sodium diet on hemodynamic variables and relevant disease biomarkers in IHA patients, with the aim of providing a useful reference for clinical treatment.MethodsFifty IHA patients were evenly randomized into two groups and provided, after a 7-day run-in period (100 mmol/d sodium), either a low-sodium diet (50 mmol/d sodium) or a normal sodium diet (100 mmol/d sodium) for an additional 7 days. After the 14-day intervention (conducted without potassium supplementation), changes in blood pressure (BP) and serum potassium were evaluated in both groups.ResultsAfter the dietary intervention, the low sodium group exhibited, compared to the normal sodium group, decreased BP (SBP: 121.8 ± 12.8 vs. 129.9 ± 12.1 mmHg, p < 0.05; DBP: 82.6 ± 7.6 vs. 86.4 ± 8.2 mmHg, p < 0.05; MAP: 95.7 ± 8.8 vs. 100.9 ± 8.4 mmHg, p < 0.05) and increased serum potassium levels (3.38 ± 0.33 vs. 3.07 ± 0.27 mmol/L, p < 0.001). The low sodium group showed also better control of both BP and serum potassium: BP <140/90 mmHg in 70.0% of total patients (76.0% vs. 64.0%, in the low and normal sodium groups, respectively; p > 0.05), BP <130/85 mmHg in 38.0% of total patients (56.0% vs. 20.0%, p < 0.05), BP <120/80 mmHg in 28.0% of total patients (44.0% vs. 12.0%, p < 0.05); serum potassium ≥3.5 mmol/L in 22.0% of total patients (32.0% vs. 12.0% in the low and normal sodium groups, respectively; p = 0.088). There were differences between the controlled BP group (<120/80 mmHg) and the non-controlled BP group (≥120/80 mmHg) in gender, BP at baseline, and type of diet (low vs. normal sodium). Female gender and low-sodium diet were protective factors for BP control.ConclusionsA low-sodium diet is effective in lowering BP and elevating serum potassium in IHA patients. Female patients on a low-sodium diet are more likely to achieve BP control (<120/80 mmHg). We advocate a dietary sodium intake of 50 mmol/d for IHA patients.Clinical trial registrationhttps://clinicaltrials.gov, Identifier NCT05649631

    Cyclization reaction of amines with dialkyl carbonates to yield 1,3-oxazinan-2-ones

    Get PDF
    A number of six-membered cyclic carbamates (oxazinanones) were synthesized from the reaction of a primary amine or hydrazine with a dicarbonate derivative of 1,3-diols in a one-pot reaction, in good yield, short time span, and in the absence of a solvent. The reaction proceeds in two steps: an intermolecular reaction to give a linear intermediate and an intramolecular cyclization to yield the cyclic carbamate. This is the first example of a carbonate reacting selectively and sequentially, firstly at the carbonyl center to form a linear carbamate and then as a leaving group to yield a cyclic carbamate

    Cordyceps cicadae polysaccharides alleviate hyperglycemia by regulating gut microbiota and its mmetabolites in high-fat diet/streptozocin-induced diabetic mice

    Get PDF
    IntroductionThe polysaccharides found in Cordyceps cicadae (C. cicadae) have received increasing academic attention owing to their wide variety of therapeutic activities.MethodsThis study evaluated the hypoglycemic, antioxidant, and anti-inflammatory effects of polysaccharides from C. cicadae (CH-P). In addition, 16s rDNA sequencing and untargeted metabolomics analysis by liquid chromatography-mass spectrometry (LC-MS) were used to estimate the changes and regulatory relationships between gut microbiota and its metabolites. The fecal microbiota transplantation (FMT) was used to verify the therapeutic effects of microbial remodeling.ResultsThe results showed that CH-P treatment displayed hypoglycemic, antioxidant, and anti-inflammatory effects and alleviated tissue damage induced by diabetes. The CH-P treatment significantly reduced the Firmicutes/Bacteroidetes ratio and increased the abundance of Bacteroides, Odoribacter, Alloprevotella, Parabacteroides, Mucispirillum, and significantly decreased the abundance of Helicobacter and Lactobacillus compared to the diabetic group. The alterations in the metabolic pathways were mostly related to amino acid biosynthesis and metabolic pathways (particularly those involving tryptophan) according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Correlation analysis showed that Bacteroides, Odoribacter, Alloprevotella, Parabacteroides, and Mucispirillum were positively correlated with indole and its derivatives, such as 5-hydroxyindole-3-acetic acid. Indole intervention significantly improved hyperglycemic symptoms and insulin sensitivity, and increased the secretion of glucagon-like peptide-1 (GLP-1) in diabetic mice. FMT reduced blood glucose levels, improved glucose tolerance, and increased insulin sensitivity in diabetic mice. However, FMT did not significantly improve GLP-1 levels.DiscussionThis indicates that C. cicadae polysaccharides alleviate hyperglycemia by regulating the production of metabolites other than indole and its derivatives by gut microbiota. This study provides an important reference for the development of novel natural products

    The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes

    Get PDF
    Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets
    • …
    corecore