21 research outputs found

    Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation

    Get PDF
    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA

    Adversarial Examples in the Physical World: A Survey

    Full text link
    Deep neural networks (DNNs) have demonstrated high vulnerability to adversarial examples. Besides the attacks in the digital world, the practical implications of adversarial examples in the physical world present significant challenges and safety concerns. However, current research on physical adversarial examples (PAEs) lacks a comprehensive understanding of their unique characteristics, leading to limited significance and understanding. In this paper, we address this gap by thoroughly examining the characteristics of PAEs within a practical workflow encompassing training, manufacturing, and re-sampling processes. By analyzing the links between physical adversarial attacks, we identify manufacturing and re-sampling as the primary sources of distinct attributes and particularities in PAEs. Leveraging this knowledge, we develop a comprehensive analysis and classification framework for PAEs based on their specific characteristics, covering over 100 studies on physical-world adversarial examples. Furthermore, we investigate defense strategies against PAEs and identify open challenges and opportunities for future research. We aim to provide a fresh, thorough, and systematic understanding of PAEs, thereby promoting the development of robust adversarial learning and its application in open-world scenarios.Comment: Adversarial examples, physical-world scenarios, attacks and defense

    A Metaheuristic Method for the Task Assignment Problem in Continuous-Casting Production

    No full text
    The steelmaking and continuous-casting (SCC) process in integrated iron and steel enterprises can be described as two stages: the upstream stage and downstream stage. Raw materials are transformed into molten steel in the upstream stage, while the downstream stage is responsible for transforming molten steel which is released at regular intervals and has a limited time for being turned into slabs. This article focuses on the task assignment problem in the downstream stage within the given information resulting from the upstream stage. This problem is formulated as a nonlinear mixed-integer programming model aimed at minimizing total tardiness within the resource constraints and time windows constraints for the tasks. An improved solution algorithm based on particle swam optimization is developed to efficiently solve the proposed model. Finally, computational experiments are implemented to evaluate the performance of the solution algorithm in terms of solution quality and computational time

    Overbooking and delivery-delay-allowed strategies for container slot allocation

    No full text
    Due to uncontrollable markets and unreliable factors in liner container shipping industry, the deviation between the actual and estimated shipment demand of containers always exists, resulting in a waste of shipping capacity or unfulfilled shipping requirements. To tackle such a slot allocation problem, this paper proposes overbooking (OB) and delivery-postponed (DP) strategies to maximize profits. Then, two corresponding multi-period models are developed and solution algorithms are presented. Finally, several numerical experiments are carried on to show the applicability of the proposed models and solution algorithms. The results indicate that the OB and DP strategies can promote the profit

    A Dynamic Scene Vision SLAM Method Incorporating Object Detection and Object Characterization

    No full text
    Simultaneous localization and mapping (SLAM) based on RGB-D cameras has been widely used for robot localization and navigation in unknown environments. Most current SLAM methods are constrained by static environment assumptions and perform poorly in real-world dynamic scenarios. To improve the robustness and performance of SLAM systems in dynamic environments, this paper proposes a new RGB-D SLAM method for indoor dynamic scenes based on object detection. The method presented in this paper improves on the ORB-SLAM3 framework. First, we designed an object detection module based on YOLO v5 and relied on it to improve the tracking module of ORB-SLAM3 and the localization accuracy of ORB-SLAM3 in dynamic environments. The dense point cloud map building module was also included, which excludes dynamic objects from the environment map to create a static environment point cloud map with high readability and reusability. Full comparison experiments with the original ORB-SLAM3 and two representative semantic SLAM methods on the TUM RGB-D dataset show that: the method in this paper can run at 30+fps, the localization accuracy improved to varying degrees compared to ORB-SLAM3 in all four image sequences, and the absolute trajectory accuracy can be improved by up to 91.10%. The localization accuracy of the method in this paper is comparable to that of DS-SLAM, DynaSLAM and the two recent target detection-based SLAM algorithms, but it runs faster. The RGB-D SLAM method proposed in this paper, which combines the most advanced object detection method and visual SLAM framework, outperforms other methods in terms of localization accuracy and map construction in a dynamic indoor environment and has a certain reference value for navigation, localization, and 3D reconstruction

    Study on the Acoustic Characteristics of Rocks and Fracability in Wunan Oilfield

    No full text
    The acoustic characteristics under P&S wave velocity of 56 samples from Low Youshashan Formation in Wunan Oilfield were tested by SCMS-E high temperature and high pressure core multi parameter test instrument, the measured velocity ratio of P wave and S wave is 1.32-1.67 and the conversion between the P and S wave velocity of rock sample was established. The corresponding dynamic elastic modulus and Poisson's ratio were obtained on the base of the elastic wave propagation theory formula. So, according to the transformation relationship between static and dynamic mechanical parameters, rock brittleness index is calculated and average value is only equal to 38. Therefore, it is difficult to form a fully developed network model during the hydraulic fracturing. These achievements provide a guiding significance for fracturing development at Low Youshashan Formation in Wunan Oilfield
    corecore