2 research outputs found

    IL-27 Signaling Promotes Th1 Response by Downregulating IL-10 Production in DCs during Chlamydial Respiratory Infection

    No full text
    Chlamydia trachomatis usually causes mucosal infections, bringing considerable morbidity and socioeconomic burden worldwide. We previously revealed that IL-27/IL-27R mediates protection against chlamydial invasion by promoting a protective Th1 response and suppressing neutrophilic inflammation. Here, we used the mouse model of Chlamydia muridarum (C. muridarum) respiratory infections to further investigate the impact of IL-27 signaling in the DCs-regulated immune response, since an elevated IL-27/IL-27R expression in DCs was identified following chlamydial infection. An adoptive transfer of Chlamydia muridarum-stimulated DCs to wild-type mice approach was subsequently used, and the donor-DCs-promoted resistance with a higher Th1 response against chlamydial infection was attenuated when DCs lacking IL-27R were used as donor cells. Flow cytometry analysis revealed the suppression of IL-27 signaling on DCs phenotypic maturation. A further functional maturation analysis of DCs revealed that IL-27 signaling restricted the protein and mRNA expression of IL-10 from DCs following infection. Thus, these findings suggest that IL-27 signaling could support the Th1 response via inhibiting IL-10 production in DCs, thus mediating the protective host defense against chlamydial respiratory infection

    A Pathogenic Role for FcγRI in the Immune Response against Chlamydial Respiratory Infection

    No full text
    FcγRI is an important cell surface receptor reported to be involved in multiple immune responses, although it has not yet been extensively studied in intracellular bacterial infections. Here, using a mouse model of C. muridarum respiratory infection, we were able to determine how FcγRI regulates the host resistance against chlamydial invasion. According to our findings, the chlamydial loads and pulmonary pathology were both reduced in FcγRI deficient (Fcgr1−/−) animals. Being infected, monocytes, macrophages, neutrophils, DCs, CD4+/CD8+ T cells, and effector Th1 subsets displayed increased FcγRI expression patterns. Altered infiltration of these cells in the lungs of Fcgr1−/− mice further demonstrated the regulation of FcγRI in the immune system and identified Th1 cells and macrophages as its target cell populations. As expected, we observed that the Th1 response was augmented in Fcgr1−/− mice, while the pro-inflammatory M1 macrophage polarization was constrained. These findings might indicate FcγRI as a potential regulator for host immunity and inflammatory response during chlamydial infection
    corecore