7 research outputs found

    Determination and comparative analysis of 13 nucleosides and nucleobases in natural fruiting body of Ophiocordyceps sinensis and its substitutes

    No full text
    Nucleosides and nucleobases are one of the most important indicators of quality control. A sensitive and reliable high performance liquid chromatography-ultraviolet method was applied to analyse 13 nucleosides and nucleobases simultaneously in 15 batches of nine Ophiocordyceps species and its allies in China. Principal component analysis (PCA) and cluster analysis were conducted by SPSS 22.0 software (IBM Corp., Armonk, NY, USA). The 15 samples of Cordyceps were differentiated successfully based on their nucleoside and nucleobase content. Total nucleosides content in mycelium was significantly higher than that in the natural fruiting bodies of Ophiocordyceps sinensis (NFOS). Five nucleosides or nucleobases – adenine (A), guanosine (Gu), uracil (U), uridine (Ur) and guanine (G) – were the major components contributed to the total variance according to PCA. The profiles of the 13 tested nucleosides and nucleobases (including adenosine, cytidine, guanosine, inosine, thymidine, uridine, cordycepin, adenine, cytosine, guanine, thymine, uracil and hypoxanthine) can discriminate different samples and can be candidate indicators applied for the quality control of Ophiocordyceps and its allies

    Right, but not left, posterior superior temporal gyrus is causally involved in vocal feedback control

    No full text
    The posterior superior temporal gyrus (pSTG) has been implicated in the integration of auditory feedback and motor system for controlling vocal production. However, the question as to whether and how the pSTG is causally involved in vocal feedback control is currently unclear. To this end, the present study selectively stimulated the left or right pSTG with continuous theta burst stimulation (c-TBS) in healthy participants, then used event-related potentials to investigate neurobehavioral changes in response to altered auditory feedback during vocal pitch regulation. The results showed that, compared to control (vertex) stimulation, c-TBS over the right pSTG led to smaller vocal compensations for pitch perturbations accompanied by smaller cortical N1 and larger P2 responses. Enhanced P2 responses received contributions from the right-lateralized temporal and parietal regions as well as the insula, and were significantly correlated with suppressed vocal compensations. Surprisingly, these effects were not found when comparing c-TBS over the left pSTG with control stimulation. Our findings provide evidence, for the first time, that supports a causal relationship between right, but not left, pSTG and auditory-motor integration for vocal pitch regulation. This lends support to a right-lateralized contribution of the pSTG in not only the bottom-up detection of vocal feedback errors but also the involvement of driving motor commands for error correction in a top-down manner

    Glaucoma Rehabilitation using ElectricAI Transcranial Stimulation (GREAT)—study protocol for randomized controlled trial using combined perceptual learning and transcranial electrical stimulation for vision enhancement

    No full text
    Abstract Background Glaucoma patients with irreversible visual field loss often experience decreased quality of life, impaired mobility, and mental health challenges. Perceptual learning (PL) and transcranial electrical stimulation (tES) have emerged as promising interventions for vision rehabilitation, showing potential in restoring residual visual functions. The Glaucoma Rehabilitation using ElectricAI Transcranial stimulation (GREAT) project aims to investigate whether combining PL and tES is more effective than using either method alone in maximizing the visual function of glaucoma patients. Additionally, the study will assess the impact of these interventions on brain neural activity, blood biomarkers, mobility, mental health, quality of life, and fear of falling. Methods The study employs a three-arm, double-blind, randomized, superiority-controlled design. Participants are randomly allocated in a 1:1:1 ratio to one of three groups receiving: (1) real PL and real tES, (2) real PL and sham tES, and (3) placebo PL and sham tES. Each participant undergoes 10 sessions per block (~ 1 h each), with a total of three blocks. Assessments are conducted at six time points: baseline, interim 1, interim 2, post-intervention, 1-month post-intervention, and 2-month post-intervention. The primary outcome is the mean deviation of the 24-2 visual field measured by the Humphrey visual field analyzer. Secondary outcomes include detection rate in the suprathreshold visual field, balance and gait functions, and electrophysiological and biological responses. This study also investigates changes in neurotransmitter metabolism, biomarkers, self-perceived quality of life, and psychological status before and after the intervention. Discussion The GREAT project is the first study to assess the effectiveness of PL and tES in the rehabilitation of glaucoma. Our findings will offer comprehensive assessments of the impact of these treatments on a wide range of brain and vision-related metrics including visual field, neural activity, biomarkers, mobility, mental health, fear of falling, and quality of life. Trial registration ClinicalTrials.gov NCT05874258 . Registered on May 15, 2023
    corecore