19 research outputs found

    Perfect modulation between fully spin-polarized spin-singlet and -triplet Andreev entanglements in a narrow quantum spin Hall system

    No full text
    We consider a quantum spin Hall (QSH) insulator strip touching on one s-wave superconductor sandwiched between two ferromagnetic insulators and study its scattering processes, tunneling conductance, and noise power by using an extended Bogoliubov-de Gennes scattering formalism. It is demonstrated that interedge coupling and noncollinear magnetizations allow for producing the usual and novel crossed Andreev reflections (ARs), respectively, and thus the corresponding spin-singlet and -triplet pairing entanglements. Moreover, by proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, not only perfect but also fully spin-polarized crossed AR at any magnetic orientational angle α is exhibited, which can be experimentally confirmed by the tunneling conductance and noise power. Particularly, the perfect and fully spin-polarized modulation between the spin-singlet and -triplet Andreev entanglements could be performed by α at certain energy values, which suggest that the setup can act as a topological superconducting spintronic device with such a manipulation function

    Calibration and Testing of Discrete Element Modeling Parameters for Fresh Goji Berries

    No full text
    This paper aims at the standard grading of fresh goji berries and develops a variable gap-type fresh goji berry grading machine. To establish a complete simulation model, the discrete element parameters of the model were calibrated by a combination of physical experiments and simulation experiments. The outline of the goji berry was extracted by the SFM-CMVS technique, and a goji berry model was obtained using the multi-spherical particle model filling method in the EDEM software. By designing the free-fall, suspension collision, slope slip, and slope rolling experiments, we obtained the discrete element simulation parameters: the inter-particle collision restitution coefficient was 0.158, the collision restitution coefficient of fresh goji berry–silicone rubber material was 0.195, the static friction coefficient of fresh goji berry–silicone rubber material was 0.377, and the rolling friction coefficient of fresh goji berry–silicone rubber material was 0.063. By designing the steepest ascent search and central composite design experiments with the angle of repose (AoR) value obtained from the physical experiment as the target value (31.27°), we determined the inter-particle static friction coefficient to be 0.454 and the inter-particle rolling friction coefficient to be 0.037. Validation tests were conducted on the calibrated discrete element modeling parameters, and the results showed that the established fresh goji berry model and the optimally calibrated parameter combination are effective for discrete element studies on fresh goji berries

    Maslinic acid activates mitochondria-dependent apoptotic pathway in cardiac carcinoma

    No full text
    Purpose: Cardiac carcinoma is the most common subtype of gastric cancer and its incidence has increased in recent years. The current chemotherapeutic drugs exhibit limited effectiveness and significant side effects in patients. Maslinic acid (MA) exerts an anti-tumor activity on a wide range of cancers and has no significant side effect; however, the anti-tumor effect of MA on cardiac carcinoma has not yet been explored. Methods: MTT assays, tumor xenograft animal model, immunoblotting, MMP assessment and flow cytometry were performed in this study. Results: MA was able to suppress the viability of cardiac carcinoma cells in both a time- and dose-dependent manner. This natural compound exhibited no cytotoxicity in normal cells. Its inhibitory effect on tumor growth was further confirmed in a mouse model. Mechanistically, MA induced the activation of p38 MAPK in cardiac carcinoma cells and, in turn, changed their mitochondrial membrane potential (MMP). Finally, caspase cascades were activated by a series of cleavages, leading to apoptosis in cardiac cancer cells. Inhibition of p38 MAPK signaling was able to rescue the effect of MA on cardiac carcinoma cells. Conclusion: Our data demonstrated that natural compound, MA, suppressed the growth of cardiac carcinoma by inducing apoptosis via the p38 MAPK/mitochondria/caspase pathway. MA and its derivatives may be promising anti-tumor agents for cardiac carcinoma treatment in the future. (Supplemental Figures available here.

    Bulked Segregant Analysis Coupled with Whole-Genome Sequencing (BSA-Seq) Mapping Identifies a Novel pi21 Haplotype Conferring Basal Resistance to Rice Blast Disease

    No full text
    Basal or partial resistance has been considered race-non-specific and broad-spectrum. Therefore, the identification of genes or quantitative trait loci (QTLs) conferring basal resistance and germplasm containing them is of significance in breeding crops with durable resistance. In this study, we performed a bulked segregant analysis coupled with whole-genome sequencing (BSA-seq) to identify QTLs controlling basal resistance to blast disease in an F2 population derived from two rice varieties, 02428 and LiXinGeng (LXG), which differ significantly in basal resistance to rice blast. Four candidate QTLs, qBBR-4, qBBR-7, qBBR-8, and qBBR-11, were mapped on chromosomes 4, 7, 8, and 11, respectively. Allelic and genotypic association analyses identified a novel haplotype of the durable blast resistance gene pi21 carrying double deletions of 30 bp and 33 bp in 02428 (pi21-2428) as a candidate gene of qBBR-4. We further assessed haplotypes of Pi21 in 325 rice accessions, and identified 11 haplotypes among the accessions, of which eight were novel types. While the resistant pi21 gene was found only in japonica before, three Chinese indica varieties, ShuHui881, Yong4, and ZhengDa4Hao, were detected carrying the resistant pi21-2428 allele. The pi21-2428 allele and pi21-2428-containing rice germplasm, thus, provide valuable resources for breeding rice varieties, especially indica rice varieties, with durable resistance to blast disease. Our results also lay the foundation for further identification and functional characterization of the other three QTLs to better understand the molecular mechanisms underlying rice basal resistance to blast disease

    Integrative analysis of the transcriptome and proteome reveals the molecular responses of tobacco to boron deficiency

    No full text
    Abstract Background Boron (B) is an essential micronutrient for plants. Inappropriate B supply detrimentally affects the productivity of numerous crops. Understanding of the molecular responses of plants to different B supply levels would be of significance in crop improvement and cultivation practices to deal with the problem. Results We conducted a comprehensive analysis of the transcriptome and proteome of tobacco seedlings to investigate the expression changes of genes/proteins in response to different B supply levels, with a particular focus on B deficiency. The global gene and protein expression profiles revealed the potential mechanisms involved in the responses of tobacco to B deficiency, including up-regulation of the NIP5;1-BORs module, complex regulation of genes/proteins related to cell wall metabolism, and up-regulation of the antioxidant machinery. Conclusion Our results demonstrated that B deficiency caused severe morphological and physiological disorders in tobacco seedlings, and revealed dynamic expression changes of tobacco genes/proteins in response to different B supply levels, especially to B deficiency, thus offering valuable insights into the molecular responses of tobacco to B deficiency

    A Multicenter, Double-Blind, Randomized, Placebo-Controlled Trial to Evaluate the Efficacy and Safety of Duliang Soft Capsule in Patients with Chronic Daily Headache

    Get PDF
    Objective. To investigate the efficacy and safety of traditional Chinese medicine Duliang soft capsule (DSC) in prophylactic treatment for patients with chronic daily headache (CDH). Methods. A multicenter, double-blind, randomized, placebo-controlled clinical study was conducted at 18 Chinese clinical centers. The participants received either DSC or placebo for 4 weeks. The primary efficacy measure was headache-free rate (HFR) in a 4-week period between the pretreatment and posttreatment stages. The secondary efficacy measures were the decrease of headache days, the duration of headache attacks, the frequency of analgesic usage, quality of life, disability, and the headache severity (VAS scores). The accompanying symptoms and adverse events were also assessed. Results. Of 584 CDH patients assessed, 468 eligible patients were randomized. 338 patients received DSC, while 111 patients were assigned in the placebo group. Following treatment, there was a 16.56% difference in HFR favoring DSC over placebo (P<0.01). Significant differences were also observed between DSC and placebo groups in the secondary measures. However, no statistical difference was found between the two groups in the associated symptoms. No severe adverse effects were observed in the study. Conclusions. DSC might be an effective and well-tolerated option for the prophylactic treatment of patients with CDH

    PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail

    No full text
    Esophageal cancer is among the most deadly malignant diseases. However, the genetic factors contributing to its occurrence are poorly understood. Multiple studies with large clinic-based cohorts revealed that variations of the phospholipase C epsilon (PLCE1) gene were associated with esophageal cancer susceptibility. However, the causative role of PLCE1 in esophageal cancer is not clear. We inactivated the functional alleles of PLCE1 by CRISPR/Cas9 genome editing technology. The resultant PLCE1 inactivated cells were analyzed both in vitro and in vivo. Our results showed that loss of PLCE1 dramatically decreased the invasion and proliferation capacity of esophageal carcinoma cells in vitro. Moreover, such PLCE1 inactivated tumor grafts exhibited significantly decreased tumor size in mice. We found that PLCE1 was required to maintain protein level of snail a key transcription factor responsible for invasion. Our further transcriptomic data revealed that deficient cells were significantly decreased in expression of genes enriched as targets of Snail. Strikingly, recovery of Snail protein at least partially rescued the invasion and proliferation capacity in PLCE1 inactivated cells. In ESCC clinical specimens, PLCE1 was correlated with tumor stage (P < .0001). Interestingly, PLCE1 expression was positively correlated Snail by immunohistochemistry in such specimens (P < .0001). Therefore, our functional experiments showed the essential roles of PLCE1 in esophageal carcinoma cells and provided evidences that targeting PLCE1 and its downstream molecules could be effective therapies for esophageal cancer
    corecore