5 research outputs found

    A Young Seedling Stripe2 phenotype in rice is caused by mutation of a chloroplast-localized nucleoside diphosphate kinase 2 required for chloroplast biogenesis

    No full text
    Abstract Chloroplast development and chlorophyll (Chl) biosynthesis in plants are regulated by many genes, but the underlying molecular mechanisms remain largely elusive. We isolated a rice mutant named yss2 (young seedling stripe2) with a striated seedling phenotype beginning from leaf 2 of delayed plant growth. The mutant developed normal green leaves from leaf 5, but reduced tillering and chlorotic leaves and panicles appeared later. Chlorotic yss2 seedlings have decreased pigment contents and impaired chloroplast development. Genetic analysis showed that the mutant phenotype was due to a single recessive gene. Positional cloning and sequence analysis identified a single nucleotide substitution in YSS2 gene causing an amino acid change from Gly to Asp. The YSS2 allele encodes a NDPK2 (nucleoside diphosphate kinase 2) protein showing high similarity to other types of NDPKs. Real-time RT-PCR analysis demonstrated that YSS2 transcripts accumulated highly in L4 sections at the early leaf development stage. Expression levels of genes associated with Chl biosynthesis and photosynthesis in yss2 were mostly decreased, but genes involved in chloroplast biogenesis were up-regulated compared to the wild type. The YSS2 protein was associated with punctate structures in the chloroplasts of rice protoplasts. Our overall data suggest that YSS2 has important roles in chloroplast biogenesis

    Evaluation of the Influence of Aquatic Plants and Lake Bottom on the Remote-Sensing Reflectance of Optically Shallow Waters

    No full text
    Aquatic plants and lake bottoms in optically shallow waters (OSWs) wield great influence on reflectance spectra, resulting in the inapplicability of most existing bio-optical models for water colour remote sensing in lakes. Based on radiative transfer theory and measured spectra from a campaign for Lake Taihu in October 2008, absorption and backscattering coefficients were used to simulate the remote-sensing reflectance, which are considered to be reliable if matched to their measured counterparts. Several cases of measured spectra at different depths, Secchi disk depth transparency, and aquatic plant height and coverage were analyzed thoroughly for spectral properties. The contribution of aquatic plants was evaluated and compared with the measured and simulated remote-sensing reflectance values. This is helpful for removing the influence of aquatic plants and lake bottoms from the spectra and for constructing an improved chlorophyll a retrieval model for OSWs, such as that for Lake Taihu, China

    Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight

    No full text
    BACKGROUND: Rice is one of the most important staple food crops in Asia. Since the first green revolution beginning in 1960s, high-yield semidwarf modern rice varieties have been widely planted; however, traditional rice varieties with tall plant type are still grown in many countries due to their good grain quality and adaptation to local climate and environment. Siputeh, a local rice variety mainly planted in Java and Sumatra islands of Indonesia, produces long grain rice with good cooking and eating quality. However, the variety has low yield with tall plant type and long growth duration and is highly susceptible to biotic and abiotic stress. RESULTS: Siputeh as the recurrent female was crossed with the donor line WH421, an elite paternal line of hybrid rice containing the sd1, Wx(b), Xa4 and Xa21 genes, followed by backcrossing and self-pollination. TS4, a BC3F4 line derived from the breeding program, was obtained through marker-assisted selection for the sd1, Wx(b), Xa4 and Xa21 loci. TS4 has semi-dwarf phenotype and short growth duration. TS4 conferred disease resistance to multiple Xanthomonas oryzae pv. oryzae (Xoo) strains collected from different countries around the world. TS4 achieved higher grain yield than Siputeh in two field trials conducted in Banda Aceh, Indonesia and Lingshui, China, respectively. Finally, TS4 has better grain quality than Siputeh in terms of degree of chalkiness and amylose content. CONCLUSION: An improved rice line, designed as TS4, has been developed to contain semi-dwarf gene sd1, low amylase content gene Wx(b) and bacterial light resistance genes Xa4 and Xa21 through marker-assisted selection. TS4 has semi-dwarf phenotype with reduced growth duration, produces high yield with good grain quality and provides broad-spectrum resistance to Xoo strains. The development of TS4 enriches the diversity of local rice varieties with high yield potential and good grain quality. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12284-014-0033-2) contains supplementary material, which is available to authorized users
    corecore