6,630 research outputs found

    Release of virtual photon and phonon pairs from qubit-plasmon-phonon ultrastrong coupling system

    Full text link
    The most important difference between ultrastrong and non-ultrastrong coupling regimes is that the ground state contains excitations. We consider a qubit-plasmon-phonon ultrastrong coupling (USC) system with a three-level atom coupled to the photon and phonon via its upper two energy levels and show that spontaneous emission of the atom from its intermediate to its ground state produces photon and phonon pairs. It is shown that the current system can produce a strong photon/phonon stream and the atom-phonon coupling plays the active role, which ensures the experimental detection. The emission spectrum and various high-order correlation functions confirm the generation of the pairs of photons and phonons. Our study has important implications for future research on virtual photon and phonon pairs creation in the ground state of the USC regime.Comment: 9 pages, 7 figure

    Quantum heat valve and entanglement in superconducting LCLC resonators

    Full text link
    Quantum superconducting circuit with flexible coupler has been a powerful platform for designing quantum thermal machines. In this letter, we employ the tunable coupling of two superconducting resonators to realize a heat valve by modulating magnetic flux using a superconducting quantum interference device (SQUID). It is shown that a heat valve can be realized in a wide parameter range. We find a consistent relation between the heat current and quantum entanglement, which indicates the dominant role of entanglement on the heat valve. It provides an insightful understanding of quantum features in quantum heat machines.Comment: 9 figures, 4 figure

    Cryopreservation of Orchid Genetic Resources by Desiccation: A Case Study of Bletilla formosana

    Get PDF
    Many native orchid populations declined yearly due to economic development and climate change. This resulted in some wild orchids being threatened. In order to maintain the orchid genetic resources, development of proper methods for the long‐term preservation is urgent. Low temperature or dry storage methods for the preservation of orchid genetic resources have been implemented but are not effective in maintaining high viability of certain orchids for long periods. Cryopreservation is one of the most acceptable methods for long‐term conservation of plant germplasm. Orchid seeds and pollens are ideal materials for long‐term preservation (seed banking) in liquid nitrogen (LN) as the seeds and pollens are minute, enabling the storage of many hundreds of thousands of seeds or pollens in a small vial, and as most species germinate readily, making the technique very economical. This article describes cryopreservation of orchid genetic resources by desiccation and a case study of Bletilla formosana. We hope to provide a more practical potential cryopreservation method for future research needs

    Multimodal Gen-AI for Fundamental Investment Research

    Full text link
    This report outlines a transformative initiative in the financial investment industry, where the conventional decision-making process, laden with labor-intensive tasks such as sifting through voluminous documents, is being reimagined. Leveraging language models, our experiments aim to automate information summarization and investment idea generation. We seek to evaluate the effectiveness of fine-tuning methods on a base model (Llama2) to achieve specific application-level goals, including providing insights into the impact of events on companies and sectors, understanding market condition relationships, generating investor-aligned investment ideas, and formatting results with stock recommendations and detailed explanations. Through state-of-the-art generative modeling techniques, the ultimate objective is to develop an AI agent prototype, liberating human investors from repetitive tasks and allowing a focus on high-level strategic thinking. The project encompasses a diverse corpus dataset, including research reports, investment memos, market news, and extensive time-series market data. We conducted three experiments applying unsupervised and supervised LoRA fine-tuning on the llama2_7b_hf_chat as the base model, as well as instruction fine-tuning on the GPT3.5 model. Statistical and human evaluations both show that the fine-tuned versions perform better in solving text modeling, summarization, reasoning, and finance domain questions, demonstrating a pivotal step towards enhancing decision-making processes in the financial domain. Code implementation for the project can be found on GitHub: https://github.com/Firenze11/finance_lm

    Quantum heat valve and diode of strongly coupled defects in amorphous material

    Full text link
    The mechanical strain can control the frequency of two-level atoms in amorphous material. In this work, we would like to employ two coupled two-level atoms to manipulate the magnitude and direction of heat transport by controlling mechanical strain to realize the function of a thermal switch and valve. It is found that a high-performance heat diode can be realized in the wide Piezo voltage range at different temperatures. We also discuss the dependence of the rectification factor on temperatures and couplings of heat reservoirs. We find that the higher temperature differences correspond to the larger rectification effect. The asymmetry system-reservoir coupling strength can enhance the magnitude of heat transfer, and the impact of asymmetric and symmetric coupling strength on the performance of the heat diode is complementary. It may provide an efficient way to modulate and control heat transport's magnitude and flow preference. This work may give insight into designing and tuning quantum heat machines.Comment: 10 pages, 9 figures;Accepted for publication in Physical Review
    • 

    corecore