5,233 research outputs found

    Radiation-induced magnetoresistance oscillation in a two-dimensional electron gas in Faraday geometry

    Full text link
    Microwave-radiation induced giant magnetoresistance oscillations recently discovered in high-mobility two-dimensional electron systems in a magnetic field, are analyzed theoretically. Multiphoton-assisted impurity scatterings are shown to be the primary origin of the oscillation. Based on a model which considers the interaction of electrons with the electromagnetic fields in Faraday geometry, we are able not only to reproduce the correct period, phase and the negative resistivity of the main oscillation, but also to obtain secondary peaks and additional maxima and minima in the resistivity curve, some of which were already observed in the experiments.Comment: 4 pages, 1 figure, revised version to be published in Phys. Rev. Let

    Local tunneling spectroscopy as signatures of the Fulde-Ferrell-Larkin-Ovchinnikov state in s- and d-wave Superconductors

    Get PDF
    The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states for two-dimensional s- and d-wave superconductors (s- and d-SC) are self-consistently studied under an in-plane magnetic field. While the stripe solution of the order parameter (OP) is found to have lower free energy in s-SC, a square lattice solution appears to be energetically more favorable in the case of d-SC. At certain symmetric sites, we find that the features in the local density of states (LDOS) can be ascribed to two types of bound states. We also show that the LDOS maps for d-SC exhibit bias-energy-dependent checkerboard patterns. These characteristics can serve as signatures of the FFLO states.Comment: 5 pages, 5 figures Type and grammaratic errors corrected. Last figure replaced by colored one. To appear in PR

    The Structure on Invariant Measures of C1C^1 generic diffeomorphisms

    Full text link
    Let Λ\Lambda be an isolated non-trival transitive set of a C1C^1 generic diffeomorphism f\in\Diff(M). We show that the space of invariant measures supported on Λ\Lambda coincides with the space of accumulation measures of time averages on one orbit. Moreover, the set of points having this property is residual in Λ\Lambda (which implies the set of irregular+^+ points is also residual in Λ\Lambda). As an application, we show that the non-uniform hyperbolicity of irregular+^+ points in Λ\Lambda with totally 0 measure (resp., the non-uniform hyperbolicity of a generic subset in Λ\Lambda) determines the uniform hyperbolicity of Λ\Lambda

    Programming with Exceptions in JCilk

    Get PDF
    JCilk extends the Java language to provide call-return semantics for multithreading, much as Cilk does for C. Java's built-in thread model does not support the passing of exceptions or return values from one thread back to the "parent" thread that created it. JCilk imports Cilk's fork-join primitives spawn and sync into Java to provide procedure-call semantics for concurrent subcomputations. This paper shows how JCilk integrates exception handling with multithreading by defining semantics consistent with the existing semantics of Java's try and catch constructs, but which handle concurrency in spawned methods. JCilk's strategy of integrating multithreading with Java's exception semantics yields some surprising semantic synergies. In particular, JCilk extends Java's exception semantics to allow exceptions to be passed from a spawned method to its parent in a natural way that obviates the need for Cilk's inlet and abort constructs. This extension is "faithful" in that it obeys Java's ordinary serial semantics when executed on a single processor. When executed in parallel, however, an exception thrown by a JCilk computation signals its sibling computations to abort, which yields a clean semantics in which only a single exception from the enclosing try block is handled. The decision to implicitly abort side computations opens a Pandora's box of subsidiary linguistic problems to be resolved, however. For instance, aborting might cause a computation to be interrupted asynchronously, causing havoc in programmer understanding of code behavior. To minimize the complexity of reasoning about aborts, JCilk signals them "semisynchronously" so that abort signals do not interrupt ordinary serial code. In addition, JCilk propagates an abort signal throughout a subcomputation naturally with a built-in CilkAbort exception, thereby allowing programmers to handle clean-up by simply catching the CilkAbort exception. The semantics of JCilk allow programs with speculative computations to be programmed easily. Speculation is essential for parallelizing programs such as branch-and-bound or heuristic search. We show how JCilk's linguistic mechanisms can be used to program a solution to the "queens" problem and an implemention of a parallel alpha-beta search.Singapore-MIT Alliance (SMA

    Suppression of the D'yakonov-Perel' spin relaxation mechanism for all spin components in [111] zincblende quantum wells

    Full text link
    We apply the D'yakonov-Perel' (DP) formalism to [111]-grown zincblende quantum wells (QWs) to compute the spin lifetimes of electrons in the two-dimensional electron gas. We account for both bulk and structural inversion asymmetry (Rashba) effects. We see that, under certain conditions, the spin splitting vanishes to first order in k, which effectively suppresses the DP spin relaxation mechanism for all spin components. We predict extended spin lifetimes as a result, giving rise to the possibility of enhanced spin storage. We also study [110]-grown QWs, where the effect of structural inversion asymmetry is to augment the spin relaxation rate of the component perpendicular to the well. We derive analytical expressions for the spin lifetime tensor and its proper axes, and see that they are dependent on the relative magnitude of the BIA- and SIA-induced splittings.Comment: v1: 5 pages, 2 figures, submitted to PRL v2: added 1 figure and supporting content, PRB forma

    U(1)' solution to the mu-problem and the proton decay problem in supersymmetry without R-parity

    Full text link
    The Minimal Supersymmetric Standard Model (MSSM) is plagued by two major fine-tuning problems: the mu-problem and the proton decay problem. We present a simultaneous solution to both problems within the framework of a U(1)'-extended MSSM (UMSSM), without requiring R-parity conservation. We identify several classes of phenomenologically viable models and provide specific examples of U(1)' charge assignments. Our models generically contain either lepton number violating or baryon number violating renormalizable interactions, whose coexistence is nevertheless automatically forbidden by the new U(1)' gauge symmetry. The U(1)' symmetry also prohibits the potentially dangerous and often ignored higher-dimensional proton decay operators such as QQQL and UUDE which are still allowed by R-parity. Thus, under minimal assumptions, we show that once the mu-problem is solved, the proton is sufficiently stable, even in the presence of a minimum set of exotics fields, as required for anomaly cancellation. Our models provide impetus for pursuing the collider phenomenology of R-parity violation within the UMSSM framework.Comment: Version published in Phys. Rev.
    • …
    corecore