10,707 research outputs found
Finite-Time Disentanglement via Spontaneous Emission
We show that under the influence of pure vacuum noise two entangled qubits
become completely disentangled in a finite time, and in a specific example we
find the time to be given by times the
usual spontaneous lifetime.Comment: revtex, 4 pages, 2 figure
Perturbed Three Vortex Dynamics
It is well known that the dynamics of three point vortices moving in an ideal
fluid in the plane can be expressed in Hamiltonian form, where the resulting
equations of motion are completely integrable in the sense of Liouville and
Arnold. The focus of this investigation is on the persistence of regular
behavior (especially periodic motion) associated to completely integrable
systems for certain (admissible) kinds of Hamiltonian perturbations of the
three vortex system in a plane. After a brief survey of the dynamics of the
integrable planar three vortex system, it is shown that the admissible class of
perturbed systems is broad enough to include three vortices in a half-plane,
three coaxial slender vortex rings in three-space, and `restricted' four vortex
dynamics in a plane. Included are two basic categories of results for
admissible perturbations: (i) general theorems for the persistence of invariant
tori and periodic orbits using Kolmogorov-Arnold-Moser and Poincare-Birkhoff
type arguments; and (ii) more specific and quantitative conclusions of a
classical perturbation theory nature guaranteeing the existence of periodic
orbits of the perturbed system close to cycles of the unperturbed system, which
occur in abundance near centers. In addition, several numerical simulations are
provided to illustrate the validity of the theorems as well as indicating their
limitations as manifested by transitions to chaotic dynamics.Comment: 26 pages, 9 figures, submitted to the Journal of Mathematical Physic
The Role of Self-Leadership in Service Leadership
One of the core beliefs of the service leadership curriculum proposed by the Hong Kong Institute of Service Leadership and Management is that ‘Every day, every human occupies a position of leadership and possesses the potential to improve his leadership quality and effectiveness’. This core belief is in sharp contrast to some of the mainstream leadership theories that only a few people and elites can be leaders. In this paper, a lecture plan regarding the nature of self-leadership with reference to service leadership is presented. The topics include definitions and concepts of self-leadership, relationships between self-leadership and service leadership, ways to promote self-leadership, and conclusions and reflections. During the lecture, students are also encouraged to reflect on how well they lead their lives, with reference to the concepts of self-management, self-monitoring, and self-improvement
Sudden Death of Entanglement of Two Jaynes-Cummings Atoms
We investigate entanglement dynamics of two isolated atoms, each in its own
Jaynes-Cummings cavity. We show analytically that initial entanglement has an
interesting subsequent time evolution, including the so-called sudden death
effect.Comment: 3 pages, 3 figure
Free-Boundary Dynamics in Elasto-plastic Amorphous Solids: The Circular Hole Problem
We develop an athermal shear-transformation-zone (STZ) theory of plastic
deformation in spatially inhomogeneous, amorphous solids. Our ultimate goal is
to describe the dynamics of the boundaries of voids or cracks in such systems
when they are subjected to remote, time-dependent tractions. The theory is
illustrated here for the case of a circular hole in an infinite two-dimensional
plate, a highly symmetric situation that allows us to solve much of the problem
analytically. In spite of its special symmetry, this example contains many
general features of systems in which stress is concentrated near free
boundaries and deforms them irreversibly. We depart from conventional
treatments of such problems in two ways. First, the STZ analysis allows us to
keep track of spatially heterogeneous, internal state variables such as the
effective disorder temperature, which determines plastic response to subsequent
loading. Second, we subject the system to stress pulses of finite duration, and
therefore are able to observe elasto-plastic response during both loading and
unloading. We compute the final deformations and residual stresses produced by
these stress pulses. Looking toward more general applications of these results,
we examine the possibility of constructing a boundary-layer theory that might
be useful in less symmetric situations.Comment: 30 pages (preprint format), 9 figure
Simulation studies of a phenomenological model for elongated virus capsid formation
We study a phenomenological model in which the simulated packing of hard,
attractive spheres on a prolate spheroid surface with convexity constraints
produces structures identical to those of prolate virus capsid structures. Our
simulation approach combines the traditional Monte Carlo method with a modified
method of random sampling on an ellipsoidal surface and a convex hull searching
algorithm. Using this approach we identify the minimum physical requirements
for non-icosahedral, elongated virus capsids, such as two aberrant flock house
virus (FHV) particles and the prolate prohead of bacteriophage , and
discuss the implication of our simulation results in the context of recent
experimental findings. Our predicted structures may also be experimentally
realized by evaporation-driven assembly of colloidal spheres
CSNL: A cost-sensitive non-linear decision tree algorithm
This article presents a new decision tree learning algorithm called CSNL that induces Cost-Sensitive Non-Linear decision trees. The algorithm is based on the hypothesis that nonlinear decision nodes provide a better basis than axis-parallel decision nodes and utilizes discriminant analysis to construct nonlinear decision trees that take account of costs of misclassification.
The performance of the algorithm is evaluated by applying it to seventeen datasets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the datasets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using nonlinear decision nodes.
The performance of the algorithm is evaluated by applying it to seventeen data sets and the results are
compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date.
The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the data sets and is considerably faster.
The use of bagging with CSNL further enhances its performance showing the significant benefits of using non-linear decision nodes
- …