5,725 research outputs found
The Structure on Invariant Measures of generic diffeomorphisms
Let be an isolated non-trival transitive set of a generic
diffeomorphism f\in\Diff(M). We show that the space of invariant measures
supported on coincides with the space of accumulation measures of
time averages on one orbit. Moreover, the set of points having this property is
residual in (which implies the set of irregular points is also
residual in ). As an application, we show that the non-uniform
hyperbolicity of irregular points in with totally 0 measure
(resp., the non-uniform hyperbolicity of a generic subset in )
determines the uniform hyperbolicity of
Supercurrent transferring through c-axis cuprate Josephson junctions with thick normal-metal-bridge
With simple but exactly solvable model, we investigate the supercurrent
transferring through the c-axis cuprate superconductor-normal
metal-superconductor junctions with the clean normal metal much thicker than
its coherence length. It is shown that the supercurrent as a function of
thickness of the normal metal decreases much slower than the exponential
decaying expected by the proximity effect. The present result may account for
the giant proximity effect observed in the c-axis cuprate SNS junctions.Comment: 6 pages, 4 figure
The Assembly History of Field Spheroidals: Evolution of Mass-to-light Ratios and Signatures of Recent Star Formation
We present a comprehensive catalog of high signal-to-noise spectra obtained
with the DEIMOS spectrograph on the Keck II telescope for a sample of
F850LP<22.43 (AB) field spheroidal (E+S0s; 163) and bulge dominated disk (61)
galaxies in the redshift range 0.2<z<1.2. We examine the zero point, tilt and
scatter of the Fundamental Plane (FP) as a function of redshift and
morphological properties, carefully accounting for luminosity-dependent biases
via Montecarlo simulations. The evolution of the overall FP can be represented
by a mean change in effective mass-to-light ratio given by <d \log (M/L_{\rm
B})/dz>=-0.72^{+0.07}_{-0.05}\pm0.04. However, this evolution depends
significantly on the dynamical mass, being slower for larger masses as reported
in a previous letter. In addition, we separately show the intrinsic scatter of
the FP increases with redshift as d(rms(M/L_{\rm B}))/dz=0.040\pm0.015.
Although these trends are consistent with single burst populations which formed
at for high mass spheroidals and z_{f}~1.2 for lower mass systems, a
more realistic picture is that most of the stellar mass formed in all systems
at z>2 with subsequent activity continuing to lower redshifts (z<1.2). The
fraction of stellar mass formed at recent times depend strongly on galactic
mass, ranging from <1% for masses above 10^{11.5} M_{\odot} to 20-40% below
10^{11} M_{\odot}. Independent support for recent activity is provided by
spectroscopic ([\ion{O}{2}] emission, H\delta) and photometric (blue cores and
broad-band colors) diagnostics. Via the analysis of a large sample with many
independent diagnostics, we are able to reconcile previously disparate
interpretations of the assembly history of field spheroidals. [Abridged]Comment: 26 pages including 24 figures, submitted to ApJ. Complete and compact
version with full resolution images available at
http://www.astro.ucla.edu/~ttreu/ms.pd
A note on Zolotarev optimal rational approximation for the overlap Dirac operator
We discuss the salient features of Zolotarev optimal rational approximation
for the inverse square root function, in particular, for its applications in
lattice QCD with overlap Dirac quark. The theoretical error bound for the
matrix-vector multiplication is derived. We check that
the error bound is always satisfied amply, for any QCD gauge configurations we
have tested. An empirical formula for the error bound is determined, together
with its numerical values (by evaluating elliptic functions) listed in Table 2
as well as plotted in Figure 3. Our results suggest that with Zolotarev
approximation to , one can practically preserve the exact
chiral symmetry of the overlap Dirac operator to very high precision, for any
gauge configurations on a finite lattice.Comment: 23 pages, 5 eps figures, v2:minor clarifications, and references
added, to appear in Phys. Rev.
The mechanism of hole carrier generation and the nature of pseudogap- and 60K-phases in YBCO
In the framework of the model assuming the formation of NUC on the pairs of
Cu ions in CuO plane the mechanism of hole carrier generation is
considered and the interpretation of pseudogap and 60 K-phases in
. is offered. The calculated dependences of hole
concentration in on doping and temperature
are found to be in a perfect quantitative agreement with experimental data. As
follows from the model the pseudogap has superconducting nature and arises at
temperature in small clusters uniting a number of
NUC's due to large fluctuations of NUC occupation. Here and
are the superconducting transition temperatures of infinite and finite
clusters of NUC's, correspondingly. The calculated and
dependences are in accordance with experiment. The area between
and corresponds to the area of fluctuations
where small clusters fluctuate between superconducting and normal states owing
to fluctuations of NUC occupation. The results may serve as important arguments
in favor of the proposed model of HTSC.Comment: 12 pages, 7 figure
A practical implementation of the Overlap-Dirac operator
A practical implementation of the Overlap-Dirac operator
is presented. The implementation exploits
the sparseness of and does not require full storage. A simple application
to parity invariant three dimensional SU(2) gauge theory is carried out to
establish that zero modes related to topology are exactly reproduced on the
lattice.Comment: Y-axis label in figure correcte
Vertical transport and electroluminescence in InAs/GaSb/InAs structures: GaSb thickness and hydrostatic pressure studies
We have measured the current-voltage (I-V) of type II InAs/GaSb/InAs double
heterojunctions (DHETs) with 'GaAs like' interface bonding and GaSb thickness
between 0-1200 \AA. A negative differential resistance (NDR) is observed for
all DHETs with GaSb thickness 60 \AA below which a dramatic change in the
shape of the I-V and a marked hysteresis is observed. The temperature
dependence of the I-V is found to be very strong below this critical GaSb
thickness. The I-V characteristics of selected DHETs are also presented under
hydrostatic pressures up to 11 kbar. Finally, a mid infra-red
electroluminescence is observed at 1 bar with a threshold at the NDR valley
bias. The band profile calculations presented in the analysis are markedly
different to those given in the literature, and arise due to the positive
charge that it is argued will build up in the GaSb layer under bias. We
conclude that the dominant conduction mechanism in DHETs is most likely to
arise out of an inelastic electron-heavy-hole interaction similar to that
observed in single heterojunctions (SHETs) with 'GaAs like' interface bonding,
and not out of resonant electron-light-hole tunnelling as proposed by Yu et al.
A Zener tunnelling mechanism is shown to contribute to the background current
beyond NDR.Comment: 8 pages 12 fig
Proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet-d-wave superconductor junctions
The proximity effect, quasiparticle transport, and local magnetic moment in
ferromagnet--d-wave superconductor junctions with {110}-oriented interface are
studied by solving self-consistently the Bogoliubov-de Gennes equations within
an extended Hubbard model. It is found that the proximity induced order
parameter oscillates in the ferromagnetic region. The modulation period is
shortened with the increased exchange field while the oscillation amplitude is
depressed by the interfacial scattering. With the determined superconducting
energy gap, a transfer matrix method is proposed to compute the subgap
conductance within a scattering approach. Many novel features including the
zero-bias conductance dip and splitting are exhibited with appropriate values
of the exchange field and interfacial scattering strength. The conductance
spectrum can be influenced seriously by the spin-flip interfacial scattering.
In addition, a sizable local magnetic moment near the {110}-oriented surface of
the d-wave superconductor is discussed.Comment: 10 pages, 16 ps-figures, to appear in Phys. Rev.
Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques
The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)
- …