1,712 research outputs found
Nightside Pollution of Exoplanet Transit Depths
Out of the known transiting extrasolar planets, the majority are gas giants
orbiting their host star at close proximity. Both theoretical and observational
studies support the hypothesis that such bodies emit significant amounts of
flux relative to the host star, increasing towards infrared wavelengths. For
the dayside of the exoplanet, this phenomenon typically permits detectable
secondary eclipses at such wavelengths, which may be used to infer atmospheric
composition. In this paper, we explore the effects of emission from the
nightside of the exoplanet on the primary transit lightcurve, which is
essentially a self-blend. Allowing for nightside emission, an exoplanet's
transit depth is no longer exclusively a function of the ratio-of-radii. The
nightside of an exoplanet is emitting flux and the contrast to the star's
emission is of the order of ~10^(-3) for hot-Jupiters. Consequently, we show
that the transit depth in the mid-infrared will be attenuated due to flux
contribution from the nightside emission by ~10^(-4). We show how this effect
can be compensated for in the case where exoplanet phase curves have been
measured, in particular for HD 189733b. For other systems, it may be possible
to make a first-order correction by using temperature estimates of the planet.
Unless the effect is accounted for, transmission spectra will also be polluted
by nightside emission and we estimate that a Spitzer broadband spectrum on a
bright target is altered at the 1-sigma level. Using archived Spitzer
measurements, we show that the effect respectively increases the 8.0um and
24.0um transit depths by 1-sigma and 0.5-sigma per transit for HD 189733b.
Consequently, we estimate that this would be 5-10 sigma effect for near-future
JWST observations.Comment: Accepted in MNRA
A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458 b
The Wide Field Camera 3 (WFC3) on Hubble Space Telescope (HST) is currently
one of the most widely used instruments for observing exoplanetary atmospheres,
especially with the use of the spatial scanning technique. An increasing number
of exoplanets have been studied using this technique as it enables the
observation of bright targets without saturating the sensitive detectors. In
this work we present a new pipeline for analyzing the data obtained with the
spatial scanning technique, starting from the raw data provided by the
instrument. In addition to commonly used correction techniques, we take into
account the geometric distortions of the instrument, whose impact may become
important when combined to the scanning process. Our approach can improve the
photometric precision for existing data and also push further the limits of the
spatial scanning technique, as it allows the analysis of even longer spatial
scans. As an application of our method and pipeline, we present the results
from a reanalysis of the spatially scanned transit spectrum of HD 209458 b. We
calculate the transit depth per wavelength channel with an average relative
uncertainty of 40 ppm. We interpret the final spectrum with T-Rex, our fully
Bayesian spectral retrieval code, which confirms the presence of water vapor
and clouds in the atmosphere of HD 209458 b. The narrow wavelength range limits
our ability to disentangle the degeneracies between the fitted atmospheric
parameters. Additional data over a broader spectral range are needed to address
this issue.Comment: 13 pages, 15 figures, 7 tables, Accepted for publication in Ap
Ground-based NIR emission spectroscopy of HD189733b
We investigate the K and L band dayside emission of the hot-Jupiter HD
189733b with three nights of secondary eclipse data obtained with the SpeX
instrument on the NASA IRTF. The observations for each of these three nights
use equivalent instrument settings and the data from one of the nights has
previously reported by Swain et al (2010). We describe an improved data
analysis method that, in conjunction with the multi-night data set, allows
increased spectral resolution (R~175) leading to high-confidence identification
of spectral features. We confirm the previously reported strong emission at
~3.3 microns and, by assuming a 5% vibrational temperature excess for methane,
we show that non-LTE emission from the methane nu3 branch is a physically
plausible source of this emission. We consider two possible energy sources that
could power non-LTE emission and additional modelling is needed to obtain a
detailed understanding of the physics of the emission mechanism. The validity
of the data analysis method and the presence of strong 3.3 microns emission is
independently confirmed by simultaneous, long-slit, L band spectroscopy of HD
189733b and a comparison star.Comment: ApJ accepte
A Principal Component Analysis-based method to analyse high-resolution spectroscopic data
High-Resolution Spectroscopy (HRS) has been used to study the composition and
dynamics of exoplanetary atmospheres. In particular, the spectrometer CRIRES
installed on the ESO-VLT has been used to record high-resolution spectra in the
Near-IR of gaseous exoplanets. Here we present a new automatic pipeline to
analyze CRIRES data-sets. Said pipeline is based on a novel use of Principal
Component Analysis (PCA) and Cross-Correlation Function (CCF). The exoplanetary
atmosphere is modeled with the -REx code using opacities at high
temperature from the ExoMol project. In this work, we tested our analysis tools
on the detection of CO and HO in the atmospheres of the hot-Jupiters
HD209458b and HD189733b. The results of our pipeline are in agreement with
previous results in the literature and other techniques.Comment: 14 pages, 12 figures, 2 tables, published in Ap
Clouds in the atmospheres of extrasolar planets. II. Thermal emission spectra of Earth-like planets influenced by low and high-level clouds
We study the impact of multi-layered clouds (low-level water and high-level
ice clouds) on the thermal emission spectra of Earth-like planets orbiting
different types of stars. Clouds have an important influence on such planetary
emission spectra due to their wavelength dependent absorption and scattering
properties. We also investigate the influence of clouds on the ability to
derive information about planetary surface temperatures from low-resolution
spectra.Comment: accepted for publication in A&
Molecular Signatures in the Near Infrared Dayside Spectrum of HD 189733b
We have measured the dayside spectrum of HD 189733b between 1.5 and 2.5
microns using the NICMOS instrument on the Hubble Space Telescope. The emergent
spectrum contains significant modulation, which we attribute to the presence of
molecular bands seen in absorption. We find that water (H2O), carbon monoxide
(CO), and carbon dioxide (CO2) are needed to explain the observations, and we
are able to estimate the mixing ratios for these molecules. We also find
temperature decreases with altitude in the ~0.01 < P < ~1 bar region of the
dayside near-infrared photosphere and set an upper limit to the dayside
abundance of methane (CH4) at these pressures.Comment: 13 pages, 3 figures. accepted in Astrophysical Journal Letter
Curved Duct Noise Prediction Using the Fast Scattering Code
Results of a study to validate the Fast Scattering Code (FSC) as a duct noise predictor, including the effects of curvature, finite impedance on the walls, and uniform background flow, are presented in this paper. Infinite duct theory was used to generate the modal content of the sound propagating within the duct. Liner effects were incorporated via a sound absorbing boundary condition on the scattering surfaces. Simulations for a rectangular duct of constant cross-sectional area have been compared to analytical solutions and experimental data. Comparisons with analytical results indicate that the code can properly calculate a given dominant mode for hardwall surfaces. Simulated acoustic behavior in the presence of lined walls (using hardwall duct modes as incident sound) is consistent with expected trends. Duct curvature was found to enhance weaker modes and reduce pressure amplitude. Agreement between simulated and experimental results for a straight duct with hard walls (no flow) was excellent
Photometric stability analysis of the Exoplanet Characterisation Observatory
Photometric stability is a key requirement for time-resolved spectroscopic
observations of transiting extrasolar planets. In the context of the Exoplanet
Characterisation Observatory (EChO) mission design, we here present and
investigate means of translating spacecraft pointing instabilities as well as
temperature fluctuation of its optical chain into an overall error budget of
the exoplanetary spectrum to be retrieved. Given the instrument specifications
as of date, we investigate the magnitudes of these photometric instabilities in
the context of simulated observations of the exoplanet HD189733b secondary
eclipse.Comment: submitted to MNRA
- âŠ