123 research outputs found
Re-evaluation of the Lagrangian particle modelling system on an experimental campaign in complex terrain
Slovenian legislation for industrial air pollution control requires efficient modelling systems for small domains over complex topography. To determine the performance and efficiency of the Lagrangian particle modelling system used
for this purpose a study was made where a general purpose modelling system designed for local-scale areas was used. The main goal of the study was to evaluate a modelling system of this kind using an operational configuration of both input data and model parameters, choosing a testing period with very complex dispersion conditions. This severe check could help to better understand the general quality
that a model can achieve in these conditions giving some idea on how to better evaluate and use some results that seem to be very negative simply looking at some statistical parameter. Data from a three-week experimental campaign performed around the ˇSoˇstanj thermal power plant during the spring of 1991 was used (analyzed) for evaluation. The database covers very high ambient concentrations (due to the absence of desulphurisation plants) over complex terrain. The simulation was performed for the full duration of the campaign and a particular situation during the 1st and the 2nd of April 1991 was used as an example to outline the model behaviour in complex conditions. During this selected sub-period measurements revealed that (measured) wind speeds were very low, wind changed course in all directions rapidly and consequently the plume spread in all directions. A comparison between measured and reconstructed SO2 concentrations was made at the positions of several
automatic air quality measuring stations located around the thermal power plant. Standard statistical indexes to evaluate model performances are instead computed at the same positions for the entire period of the experimental campaign. Overall the reconstructed SO2 concentrations were underestimated relative to the measured ones, but all direct air pollution events were reconstructed. Some weaknesses of the model in the correct reconstruction of peak events are explained and a way to better describe them and to enhance statistical indexes is proposed
An intercomparison of two turbulence closure schemes and four parameterizations for stochastic dispersion models
Two Lagrangian particle models, developed by Luhar and Britter (Atmos. Environ., 23 (1989) 1191) and Weil (J. Atmos. Sci., 47 (1990) 501), satisfying the “well-mixed” condition as prescribed by Thomson (J. Fluid. Mech., 180 (1987) 529), are compared. They differ in the closure scheme used in calculating the probability density function of the random forcing in a convective boundary layer. Four different turbulent parameterizations were used as input to both models. Their performances are evaluated against one of the well-known Willis and Deardorff water tank experiments (Atmos. Environ., 12 (1978) 1305). Predicted and measured ground-level concentrations (g.l.c.), maximum g.l.c. distance, mean plume height and plume vertical spread are presented and discussed
MICROSPRAY SIMULATION OF DENSE GAS DISPERSION IN COMPLEX TERRAIN
An extended validation of the new Lagrangian particle model MicroSpray version for dense gas simulation is proposed.
MicroSpray simulates the dense gas dispersion in situations characterized by the presence of buildings, other obstacles, complex
terrain, and possible occurrence of low wind speed conditions. Its performances are compared to a chlorine railway accident
(Macdona), to a field experiment (Kit Fox) and to an atmospheric CFD model
BIM and Mixed Reality for the New Management of Storage Area
The fourth industrial revolution that has touched the last decades, has involved several sectors including the construction world. The digitization and automation of industrial processes has implemented the development of connection platforms that can communicate many information for different users such as Smart Glasses or immersive headset. Most of the time, innovation does not only concern the technological field, but involves the entire organizational and managerial sphere. Digitization allows new tools such as Building Information Modelling to expand its application scale, making it an excellent tool for integrating and sharing data with their own information management systems (MES). The aims of this contribution are reproducing a virtual warehouse through parametric digital modelling, to which all the management data have been associated; for example, the average stock, the rotation index, etc. Thanks to the export of the database extrapolated from its management system of the analyzed industry, it was possible to define the correct visualization of the virtual model, interrogating the real data coming from the real warehouse. Through Smart Glasses, the user of the area could allocate the products in the correct position and update in the cloud the information properties associated with the individual product and the entire department. The use of virtual platforms for the visualization and the sharing of the data, facilitate the optimization of the industrial processes
Single-marker and haplotype-based genome-wide association studies for the number of teats in two heavy pig breeds
The number of teats is a reproductive-related trait of great economic relevance as it affects the mothering ability of the sows and thus the number of properly weaned piglets. Moreover, genetic improvement of this trait is fundamental to parallelly help the selection for increased litter size. We present the results of single-marker and haplotypes-based genome-wide association studies for the number of teats in two large cohorts of heavy pig breeds (Italian Large White and Italian Landrace) including 3990 animals genotyped with the 70K GGP Porcine BeadChip and other 1927 animals genotyped with the Illumina PorcineSNP60 BeadChip. In the Italian Large White population, genome scans identified three genome regions (SSC7, SSC10, and SSC12) that confirmed the involvement of the VRTN gene (as we previously reported) and highlighted additional loci known to affect teat counts, including the FRMD4A and HOXB1 gene regions. A different picture emerged in the Italian Landrace population, with a total of 12 genome regions in eight chromosomes (SSC3, SSC6, SSC8, SSC11, SSC13, SSC14, SSC15, and SSC16) mainly detected via the haplotype-based genome scan. The most relevant QTL was close to the ARL4C gene on SSC15. Markers in the VRTN gene region were not significant in the Italian Landrace breed. The use of both single-marker and haplotype-based genome-wide association analyses can be helpful to exploit and dissect the genome of the pigs of different populations. Overall, the obtained results supported the polygenic nature of the investigated trait and better elucidated its genetic architecture in Italian heavy pigs
Flux-gradient relationship for turbulent dispersion over complex terrain
International audienceThe transfer of a passive tracer in inhomogeneous turbulent flow is investigated. Starting from Lumley's constitutive equation, we derived an expression for the ratio between the effective eddy diffusivity K and eddy diffusivity K as a function of three length scales characterizing the local turbulence structure, flux variations and turbulence inhomogeneities. The theoretical predictions for the one-dimensional case of inhomogeneous symmetric turbulence were validated through a comparison with the numerical results of a Lagrangian particle model simulating a wind tunnel experiment of dispersion in the lee of an idealized two-dimensional hill. A qualitative agreement is reached between the theoretical evaluation of K and the value obtained from the numerical simulation
A missense mutation in Katnal1 underlies behavioural, neurological and ciliary anomalies
Microtubule severing enzymes implement a diverse range of tissue-specific molecular functions throughout development and into adulthood. Although microtubule severing is fundamental to many dynamic neural processes, little is known regarding the role of the family member Katanin p60 subunit A-like 1, KATNAL1, in central nervous system (CNS) function. Recent studies reporting that microdeletions incorporating the KATNAL1 locus in humans result in intellectual disability and microcephaly suggest that KATNAL1 may play a prominent role in the CNS; however, such associations lack the functional data required to highlight potential mechanisms which link the gene to disease symptoms. Here we identify and characterise a mouse line carrying a loss of function allele in Katnal1. We show that mutants express behavioural deficits including in circadian rhythms, sleep, anxiety and learning/memory. Furthermore, in the brains of Katnal1 mutant mice we reveal numerous morphological abnormalities and defects in neuronal migration and morphology. Furthermore we demonstrate defects in the motile cilia of the ventricular ependymal cells of mutants, suggesting a role for Katnal1 in the development of ciliary function. We believe the data we present here are the first to associate KATNAL1 with such phenotypes, demonstrating that the protein plays keys roles in a number of processes integral to the development of neuronal function and behaviour.Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.54
Recommended from our members
Evaluation of fast atmospheric dispersion models in a regular street network
The need to balance computational speed and simulation accuracy is a key challenge in designing atmospheric dispersion models that can be used in scenarios where near real-time hazard predictions are needed. This challenge is aggravated in cities, where models need to have some degree of building-awareness, alongside the ability to capture effects of dominant urban flow processes. We use a combination of high-resolution large-eddy simulation (LES) and wind-tunnel data of flow and dispersion in an idealised, equal-height urban canopy to highlight important dispersion processes and evaluate how these are reproduced by representatives of the most prevalent modelling approaches: (i) a Gaussian plume model, (ii) a Lagrangian stochastic model and (iii) street-network dispersion models. Concentration data from the LES, validated against the wind-tunnel data, were averaged over the volumes of streets in order to provide a high-fidelity reference suitable for evaluating the different models on the same footing. For the particular combination of forcing wind direction and source location studied here, the strongest deviations from the LES reference were associated with mean over-predictions of concentrations by approximately a factor of 2 and with a relative scatter larger than a factor of 4 of the mean, corresponding to cases where the mean plume centreline also deviated significantly from the LES. This was linked to low accuracy of the underlying flow models/parameters that resulted in a misrepresentation of pollutant channelling along streets and of the uneven plume branching observed in intersections. The agreement of model predictions with the LES (which explicitly resolves the turbulent flow and dispersion processes) greatly improved by increasing the accuracy of building-induced modifications of the driving flow field. When provided with a limited set of representative velocity parameters, the comparatively simple street-network models performed equally well or better compared to the Lagrangian model run on full 3D wind fields. The study showed that street-network models capture the dominant building-induced dispersion processes in the canopy layer through parametrisations of horizontal advection and vertical exchange processes at scales of practical interest. At the same time, computational costs and computing times associated with the network approach are ideally suited for emergency-response applications
- …