12 research outputs found

    Proinflammatory cytokines IL-6, IL-1β, TNF-α in infective endocarditis

    Get PDF
    Aim. To study the features of macrophages in the tissues of resected valves in operated patients with infective endocarditis (IE), their significance and interaction with inflammatory markers to improve the effectiveness of IE diagnosis. Materials and methods. Prospectively the research included 25 adult patients with active IE (Duke criteria 2015) and 24 patients with heart defects without IE, hospitalized in a cardiosurgical hospital in Moscow (2021–2022). A standard laboratory and instrumental examination was carried out for the diagnosis of IE, including etiological diagnosis with microbiological and molecular biological methods, and echocardiographic examination of heart. Additionally, the neutrophil-to-lymphocyte ratio (NLR) was calculated. The study of macrophages was carried out in the tissues of resected valves with the determination of the expression of pro- and anti-inflammatory cytokine genes, macrophage markers (CD 68+) using real-time PCR. Results. Increased expression of proinflammatory cytokines IL-1β, TNF-α and IL-6 was revealed in the group of operated patients with IE with significant differences in IL-1β (CI [IQR] 0.00367 [0.00047–0.01553] vs 0.00018 [0.00012–0.00262]; p0.05) and IL-6 (CI [IQR] 0.00367 [0.00047–0.01553] vs 0.00018 [0.00012–0.00262]; p0.05) and IL-6 (CI [IQR] 0.00338 [0.00066–0.01674] vs 0.00054 [0.00044–0.00378]; p0.05). The expression of anti-inflammatory cytokines in valve tissues prevailed in the control group without significant differences from patients with IE. The macrophage marker CD 68+ was revealed in all examined patients with a significant quantitative predominance in the group of patients with IE. There were no differences in the expression of pro- and anti-inflammatory cytokines depending on the presence of embolic events, intracardiac complications, etiological affiliation to S. aureus, as well as hospital mortality and combined endpoint (death from all causes or recurrence of IE 6 months after surgery) in patients with IE with or without events. Cytokines IL-1β and IL-6 positively correlated with each other, with leukocytes and NLR. ROC analysis determined that IL-1β and NLR had the most favorable features for the diagnosis of IE [IL-1β AUC 0.816 (p=0.02), NLR AUC 0.807 (p=0.03)]. IL-6 did not show a diagnostic value in IE. The threshold value for IL-1β was 0.00029 (sensitivity 86.4%, specificity 60.0%, prognostic value of negative result 75.0% and positive 76.0%, AUC 0.761; p=0.008). Conclusion. The valve macrophages of patients with IE express elevated levels of proinflammatory cytokines IL-1β and IL-6, regardless of etiological affiliation or complicated course of IE. IL-1β has a high diagnostic value for determining the inflammatory activity in IE

    Migration, proliferation and cell death of regenerating liver macrophages in an experimental model

    Get PDF
    Relevance . Macrophages are the leading regulatory cell-lineage taking part in reparative processes in mammals, and the liver is no exception. The ratio of monocyte migration, proliferation and death of macrophages during liver regeneration requires further studies. The aim was to quantify the intensity of monocyte migration, cell proliferation and apoptosis of resident liver macrophages after its 70 % resection in a mouse model. Materials and Methods. We performed 70 % liver resection in sexually mature male BalbC mice. Cells of liver monocyte-macrophage system were obtained by magnetic sorting by marker F4/80. The immunophenotype of the isolated cells was further studied by cytofluorimetry, the level of proliferation and cell death, the content of cyclins and P53 was determined by western blot. Results and Discussion . It was found that after partial hepatectomy there is a marked migration of monocytes/macrophages positive for Ly6C and CD11b markers to the liver, the migration process starts already in the first day after the operation. On the same terms there is a rise in proliferative activity of macrophages, established by Ki67 marker, the peak of proliferation - 3 days after partial hepatectomy. A significant increase in the number of dying macrophages was found early after liver resection. Conclusion . The obtained data indicate that liver regeneration in mammals on the model in mice is accompanied by proliferation migration and cell death of macrophages. Taking into account the immunophenotype of macrophages, we can conclude that Ly6C+ blood monocytes migrate to the liver, and resident macrophages participate in proliferation. The obtained data confirm the universality of the course of reparative processes in mammals

    Macrophage population state and proliferative activity of spleen cells under liver regeneration conditions

    Get PDF
    Relevance. Currently, the participation of immune system cells in the regulation of reparative processes is attracting more and more attention of researchers. There is an anatomical connection between the liver and spleen by means of portal vein. Thus, cytokines and other biologically active substances can enter the liver from the spleen through the portal vein, as well as cells can migrate to the liver. However, the specific mechanisms of mutual influence of the mentioned organs, including in reparative processes, remain poorly studied. The aim of our work was to study the state of spleen monocyte-macrophage population after liver resection, as well as the proliferative activity of spleen cells during liver regeneration . Materials and Methods . The model of liver regeneration after 70 % resection in mouse was reproduced in this work. The animals were taken out of the experiment after 1, 3 and 7 days. The marker of cell proliferation Ki67 was immunohistochemically detected, the state of spleen monocyte-macrophage population was evaluated by markers CD68, CD115, CD206, F4/80 by methods of immunohistochemistry and flow cytometry. Results and Discussion . The liver regeneration had a pronounced effect on the cytoarchitectonics of the spleen. In 1 day after liver resection in the spleen there was observed a decrease in the share of Ki67+cells, according to the flow cytometry data there was a decrease in the number of CD115+cells, in 3 and 7 days there was a decrease in the number of F4/80+ macrophages. Conclusion . Liver resection causes changes in the state of cell populations of the spleen as well. First of all, to the decrease in the activity of proliferative processes in it, as well as to the changes in the state of the monocyte-macrophage system. A decrease in the content of CD115+ and F4/80+ cells in the spleen was found, which indirectly indicates the migration of monocytes/macrophages after liver resection, which can also influence the course of reparative processes in the liver

    Neuroprotective and anti-inflammatory properties of proteins secreted by glial progenitor cells derived from human iPSCs

    Get PDF
    Currently, stem cells technology is an effective tool in regenerative medicine. Cell therapy is based on the use of stem/progenitor cells to repair or replace damaged tissues or organs. This approach can be used to treat various diseases, such as cardiovascular, neurological diseases, and injuries of various origins. The mechanisms of cell therapy therapeutic action are based on the integration of the graft into the damaged tissue (replacement effect) and the ability of cells to secrete biologically active molecules such as cytokines, growth factors and other signaling molecules that promote regeneration (paracrine effect). However, cell transplantation has a number of limitations due to cell transportation complexity and immune rejection. A potentially more effective therapy is using only paracrine factors released by stem cells. Secreted factors can positively affect the damaged tissue: promote forming new blood vessels, stimulate cell proliferation, and reduce inflammation and apoptosis. In this work, we have studied the anti-inflammatory and neuroprotective effects of proteins with a molecular weight below 100 kDa secreted by glial progenitor cells obtained from human induced pluripotent stem cells. Proteins secreted by glial progenitor cells exerted anti-inflammatory effects in a primary glial culture model of LPS-induced inflammation by reducing nitric oxide (NO) production through inhibition of inducible NO synthase (iNOS). At the same time, added secreted proteins neutralized the effect of glutamate, increasing the number of viable neurons to control values. This effect is a result of decreased level of intracellular calcium, which, at elevated concentrations, triggers apoptotic death of neurons. In addition, secreted proteins reduce mitochondrial depolarization caused by glutamate excitotoxicity and help maintain higher NADH levels. This therapy can be successfully introduced into clinical practice after additional preclinical studies, increasing the effectiveness of rehabilitation of patients with neurological diseases

    Phenotypical and Functional Polymorphism of Liver Resident Macrophages

    No full text
    Liver diseases are one of the main causes of mortality. In this regard, the development of new ways of reparative processes stimulation is relevant. Macrophages play a leading role in the regulation of liver homeostasis in physiological conditions and in pathology. In this regard, the development of new liver treatment methods is impossible without taking into account this cell population. Resident macrophages of the liver, Kupffer cells, represent a unique cell population, first of all, due to their development. Most of the liver macrophages belong to the self-sustaining macrophage cell population, whose origin is not bone marrow. In addition, Kupffer cells are involved in such processes as regulation of hepatocyte proliferation and apoptosis, remodeling of the intercellular matrix, lipid metabolism, protective function, etc. Such a broad spectrum of liver macrophage functions indicates their high functional plasticity. The review summarizes recent data on the development, phenotypic and functional plasticity, and participation in the reparative processes of liver macrophages: resident macrophages (Kupffer cells) and bone marrow-derived macrophages

    Altered Glycolysis, Mitochondrial Biogenesis, Autophagy and Apoptosis in Peritoneal Endometriosis in Adolescents

    No full text
    Energy metabolism plays a pivotal role in the pathogenesis of endometriosis. For the initial stages of the disease in adolescents, this aspect remains unexplored. The objective of this paper was to analyze the association of cellular and endosomal profiles of markers of glycolysis, mitochondrial biogenesis, apoptosis, autophagy and estrogen signaling in peritoneal endometriosis (PE) in adolescents. We included 60 girls aged 13–17 years in a case–control study: 45 with laparoscopically confirmed PE (main group) and 15 with paramesonephric cysts (comparison group). Samples of plasma and peritoneal fluid exosomes, endometrioid foci and non-affected peritoneum were tested for estrogen receptor (Erα/β), hexokinase (Hex2), pyruvate dehydrogenase kinase (PDK1), glucose transporter (Glut1), monocarboxylate transporters (MCT1 and MCT2), optic atrophy 1 (OPA1, mitochondrial fusion protein), dynamin-related protein 1 (DRP1, mitochondrial fission protein), Bax, Bcl2, Beclin1, Bnip3, P38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1 (Hif-1α), mitochondrial voltage-dependent anion channel (VDAC) and transforming growth factor (TGFβ) proteins as markers of estrogen signaling, glycolysis rates, mitochondrial biogenesis and damage, apoptosis and autophagy (Western-Blot and PCR). The analysis identified higher levels of molecules associated with proliferation (ERβ), glycolysis (MCT2, PDK1, Glut1, Hex2, TGFβ and Hif-1α), mitochondrial biogenesis (OPA1, DRP1) and autophagy (P38, Beclin1 and Bnip3) and decreased levels of apoptosis markers (Bcl2/Bax) in endometrioid foci compared to non-affected peritoneum and that in the comparison group (p p < 0.05). The results of the differential expression profiles indicate microenvironment modification, mitochondrial biogenesis, estrogen reception activation and glycolytic switch along with apoptosis suppression in peritoneal endometrioid foci already in adolescents

    Dynamics of macrophage populations of the liver after subtotal hepatectomy in rats

    No full text
    Abstract Background In many clinical cases of extensive liver resection (e.g. due to malignancy), the residual portion is too small to maintain the body homeostasis. The resulting acute liver failure is associated with the compensatory growth inhibition, which is a typical manifestation of the ‘small for size’ liver syndrome. The study investigates possible causes of the delayed onset of hepatocyte proliferation after subtotal hepatectomy (80% liver resection) in rats. Results The data indicate that the growth inhibition correlates with delayed upregulation of the Tnf gene expression and low content of the corresponding Tnfα protein within the residual hepatic tissue. Considering the involvement of Tnf/Tnfα, the observed growth inhibition may be related to particular properties of liver macrophages – the resident Kupffer cells with CD68+CX1CR3−CD11b− phenotype. Conclusions The delayed onset of hepatocyte proliferation correlates with low levels of Tnfα in the residual hepatic tissue. The observed growth inhibition possibly reflects specific composition of macrophage population of the liver. It is entirely composed of embryonically-derived Kupffer cells, which express the ‘proregeneratory’ M2 macrophage-specific marker CD206 in the course of regeneration

    Altered Monocyte and Lymphocyte Phenotypes Associated with Pathogenesis and Clinical Efficacy of Progestogen Therapy for Peritoneal Endometriosis in Adolescents

    No full text
    Background: Immunological imbalances characteristic of endometriosis may develop as early as the primary manifestations of the disease in adolescence. Objective: To evaluate subpopulation dynamics of monocytes and lymphocytes in peripheral blood and peritoneal fluid of adolescents with peritoneal endometriosis at diagnosis and after 1-year progestogen therapy. Methods: This study included 70 girls, 13–17 years old, diagnosed laparoscopically with peritoneal endometriosis (n = 50, main group) or paramesonephric cysts (n = 20, comparison group). Phenotypes of monocytes and lymphocytes of the blood and macrophages of the peritoneal fluid were analyzed by flow cytometry at diagnosis and during progestogen therapy. Results: Differential blood counts of CD16+ (p + (p = 0.017) monocytes were identified as independent risk factors for peritoneal endometriosis in adolescents. During the treatment, cytotoxic lymphocytes CD56dimCD16bright (p = 0.049) and CD206+ monocytes (p p = 0.017). The CD56dimCD16bright blood counts before (p p = 0.006), as well as CD206+ blood counts during the treatment (p = 0.038), were associated with the efficacy of pain relief after 1-year progestogen therapy. Conclusions: Adolescents with peritoneal endometriosis have altered counts of pro- and anti-inflammatory monocytes and lymphocytes both before and after 1-year progestogen therapy, correlating with treatment efficacy and justifying long-term hormonal therapy

    Molecular mechanisms of splenectomy-induced hepatocyte proliferation.

    No full text
    Functional and anatomical connection between the liver and the spleen is most clearly manifested in various pathological conditions of the liver (cirrhosis, hepatitis). The mechanisms of the interaction between the two organs are still poorly understood, as there have been practically no studies on the influence exerted by the spleen on the normal liver. Mature male Sprague-Dawley rats of 250-260 g body weight, 3 months old, were splenectomized. The highest numbers of Ki67+ hepatocytes in the liver of splenectomized rats were observed at 24 h after the surgery, simultaneously with the highest index of Ki67-positive hepatocytes. After surgical removal of the spleen, expression of certain genes in the liver tissues increased. A number of genes were upregulated in the liver at a single time point of 24 h, including Ccne1, Egf, Tnfa, Il6, Hgf, Met, Tgfb1r2 and Nos2. The expression of Ccnd1, Tgfb1, Tgfb1r1 and Il10 in the liver was upregulated over the course of 3 days after splenectomy. Monitoring of the liver macrophage populations in splenectomized animals revealed a statistically significant increase in the proportion of CD68-positive cells in the liver (as compared with sham-operated controls) detectable at 24 h and 48 h after the surgery. The difference in the liver content of CD68-positive cells between splenectomized and sham-operated animals evened out by day 3 after the surgery. No alterations in the liver content of CD163-positive cells were observed in the experiments. A decrease in the proportion of CD206-positive liver macrophages was observed at 48 h after splenectomy. The splenectomy-induced hepatocyte proliferation is described by us for the first time. Mechanistically, the effect is apparently induced by the removal of spleen as a major source of Tgfb1 (hepatocyte growth inhibitor) and subsequently supported by activation of proliferation factor-encoding genes in the liver
    corecore