34 research outputs found

    On Measuring Accurate 21-cm Line Profiles with the Robert C. Byrd Green Bank Telescope

    Full text link
    We use observational data to show that 21 cm line profiles measured with the Green Bank Telescope (GBT) are subject to significant inaccuracy. These include ~10% errors in the calibrated gain and significant contribution from distant sidelobes. In addition, there are ~60% variations between the GBT and Leiden/Argentine/Bonn 21 cm line profile intensities, which probably occur because of the high main-beam efficiency of the GBT. Stokes V profiles from the GBT contain inaccuracies that are related to the distant sidelobes. We illustrate these problems, define physically motivated components for the sidelobes, and provide numerical results showing the inaccuracies. We provide a correction scheme for Stokes I 21 cm line profiles that is fairly successful and provide some rule-of-thumb comments concerning the accuracy of Stokes V profiles.Comment: 39 pages, 20 figures, accepted for publication in PAS

    HI Imaging of LGS 3 and an Apparently Interacting High-Velocity Cloud

    Full text link
    We present a 93' by 93' map of the area near the Local Group dwarf galaxy LGS 3, centered on an HI cloud 30' away from the galaxy. Previous authors associated this cloud with LGS 3 but relied on observations made with a 36' beam. Our high-resolution (3.4'), wide-field Arecibo observations of the region reveal that the HI cloud is distinct from the galaxy and suggest an interaction between the two. We point out faint emission features in the map that may be gas that has been tidally removed from the HI cloud by LGS 3. We also derive the rotation curve of the cloud and find that it is in solid-body rotation out to a radius of 10', beyond which the rotation velocity begins to decline. Assuming a spherical geometry for the cloud, the implied mass is 2.8 x 10^7 (d/Mpc) M_{Sun}, where d is the distance in Mpc. The observed HI mass is 5.5 x 10^6 (d/Mpc)^2 M_{Sun}, implying that the cloud is dark-matter dominated unless its distance is at least 1.9 Mpc. We propose that the cloud is a high-velocity cloud that is undergoing a tidal interaction with LGS 3 and therefore is located roughly 700 kpc away from the Milky Way. The cloud then contains a total mass of ~2.0 x 10^7 M_{Sun}, 82% of which consists of dark matter.Comment: 5 pages, 2 color figures. Accepted for publication in ApJ Letter

    Parsec-scale magnetic fields in Arp 220

    Full text link
    We present the first very-long-baseline interferometry (VLBI) detections of Zeeman splitting in another galaxy. We used Arecibo Observatory, the Green Bank Telescope, and the Very Long Baseline Array to perform dual-polarization observations of OH maser lines in the merging galaxy Arp 220. We measured magnetic fields of \sim1-5 mG associated with three roughly parsec-sized clouds in the nuclear regions of Arp 220. Our measured magnetic fields have comparable strengths and the same direction as features at the same velocity identified in previous Zeeman observations with Arecibo alone. The agreement between single dish and VLBI results provides critical validation of previous Zeeman splitting observations of OH megamasers that used a single large dish. The measured magnetic field strengths indicate that magnetic energy densities are comparable to gravitational energy in OH maser clouds. We also compare our total intensity results to previously published VLBI observations of OH megamasers in Arp 220. We find evidence for changes in both structure and amplitude of the OH maser lines that are most easily explained by variability intrinsic to the masing region, rather than variability produced by interstellar scintillation. Our results demonstrate the potential for using high-sensitivity VLBI to study magnetic fields on small spatial scales in extragalactic systems.Comment: 9 pages, accepted to MNRA

    Extragalactic Zeeman Detections in OH Megamasers

    Full text link
    We have measured the Zeeman splitting of OH megamaser emission at 1667 MHz from five (ultra)luminous infrared galaxies ([U]LIRGs) using the 305 m Arecibo telescope and the 100 m Green Bank Telescope. Five of eight targeted galaxies show significant Zeeman-splitting detections, with 14 individual masing components detected and line-of-sight magnetic field strengths ranging from ~0.5-18 mG. The detected field strengths are similar to those measured in Galactic OH masers, suggesting that the local process of massive star formation occurs under similar conditions in (U)LIRGs and the Galaxy, in spite of the vastly different large-scale environments. Our measured field strengths are also similar to magnetic field strengths in (U)LIRGs inferred from synchrotron observations, implying that milligauss magnetic fields likely pervade most phases of the interstellar medium in (U)LIRGs. These results provide a promising new tool for probing the astrophysics of distant galaxies.Comment: 32 pages, 14 figures, 8 tables. Accepted for publication in The Astrophysical Journal v680n2, June 20, 2008; corrected 2 typo

    Gas Rich Dwarf Spheroidals

    Get PDF
    We present evidence that nearly half of the dwarf spheroidal galaxies (dSph and dSph/dIrr) in the Local Group are associated with large reservoirs of atomic gas, in some cases larger than the stellar mass. The gas is sometimes found at large distance (~10 kpc) from the center of a galaxy and is not necessarily centered on it. Similarly large quantities of ionized gas could be hidden in these systems as well. The properties of some of the gas reservoirs are similar to the median properties of the High-Velocity Clouds (HVCs); two of the HI reservoirs are catalogued HVCs. The association of the HI with the dwarf spheroidals might thus provide a link between the HVCs and stars. We show that the HI content of the Local Group dSphs and dIrrs exhibits a sharp decline if the galaxy is within 250 kpc of either the Milky Way or M31. This can be explained if both galaxies have a sufficiently massive x-ray emitting halo that produces ram-pressure stripping if a dwarf ventures too close to either giant spiral. We also investigate tidal stripping of the dwarf galaxies and find that although it may play a role, it cannot explain the apparent total absence of neutral gas in most dSph galaxies at distances less than 250 kpc. For the derived mean density of the hot gas, n_0 = 2.5e-5 cm^-2, ram-pressure stripping is found to be more than an order of magnitude more effective in removing the gas from the dSph galaxies. The hot halo, with an inferred mass of 1e10 solar masses, may represent a reservoir of ~1000 destroyed dwarf systems, either HVCs or true dwarf galaxies similar to those we observe now.Comment: AASTex preprint style, 27 pages including 12 figures. Submitted to ApJ. See also http://astro.berkeley.edu/~robisha

    Spectral Polarization of the Redshifted 21 cm Absorption Line Toward 3C 286

    Full text link
    A re-analysis of the Stokes-parameter spectra obtained of the z=0.692 21 cm absorption line toward 3C 286 shows that our original claimed detection of Zeeman splitting by a line-of-sight magnetic field, B_los = 87 microgauss is incorrect. Because of an insidious software error, what we reported as Stokes V is actually Stokes U: the revised Stokes V spectrum indicates a 3-sigma upper limit of B_los < 17 microgauss. The correct analysis reveals an absorption feature in fractional polarization that is offset in velocity from the Stokes I spectrum by -1.9 km/s. The polarization position-angle spectrum shows a dip that is also significantly offset from the Stokes I feature, but at a velocity that differs slightly from the absorption feature in fractional polarization. We model the absorption feature with 3 velocity components against the core-jet structure of 3C 286. Our chisquare minimization fitting results in components with differing (1) ratios of H I column density to spin temperature, (2) velocity centroids, and (3) velocity dispersions. The change in polarization position angle with frequency implies incomplete coverage of the background jet source by the absorber. It also implies a spatial variation of the polarization position angle across the jet source, which is observed at frequencies higher than the 839.4 MHz absorption frequency. The multi-component structure of the gas is best understood in terms of components with spatial scales of ~100 pc comprised of hundreds of low-temperature (T < 200 K) clouds with linear dimensions of about 1 pc.Comment: Accepted for Publication by the Astrophysical Journa
    corecore