96 research outputs found

    Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation

    Get PDF
    BACKGROUND: Bayesian phylogenetic inference holds promise as an alternative to maximum likelihood, particularly for large molecular-sequence data sets. We have investigated the performance of Bayesian inference with empirical and simulated protein-sequence data under conditions of relative branch-length differences and model violation. RESULTS: With empirical protein-sequence data, Bayesian posterior probabilities provide more-generous estimates of subtree reliability than does the nonparametric bootstrap combined with maximum likelihood inference, reaching 100% posterior probability at bootstrap proportions around 80%. With simulated 7-taxon protein-sequence datasets, Bayesian posterior probabilities are somewhat more generous than bootstrap proportions, but do not saturate. Compared with likelihood, Bayesian phylogenetic inference can be as or more robust to relative branch-length differences for datasets of this size, particularly when among-sites rate variation is modeled using a gamma distribution. When the (known) correct model was used to infer trees, Bayesian inference recovered the (known) correct tree in 100% of instances in which one or two branches were up to 20-fold longer than the others. At ratios more extreme than 20-fold, topological accuracy of reconstruction degraded only slowly when only one branch was of relatively greater length, but more rapidly when there were two such branches. Under an incorrect model of sequence change, inaccurate trees were sometimes observed at less extreme branch-length ratios, and (particularly for trees with single long branches) such trees tended to be more inaccurate. The effect of model violation on accuracy of reconstruction for trees with two long branches was more variable, but gamma-corrected Bayesian inference nonetheless yielded more-accurate trees than did either maximum likelihood or uncorrected Bayesian inference across the range of conditions we examined. Assuming an exponential Bayesian prior on branch lengths did not improve, and under certain extreme conditions significantly diminished, performance. The two topology-comparison metrics we employed, edit distance and Robinson-Foulds symmetric distance, yielded different but highly complementary measures of performance. CONCLUSIONS: Our results demonstrate that Bayesian inference can be relatively robust against biologically reasonable levels of relative branch-length differences and model violation, and thus may provide a promising alternative to maximum likelihood for inference of phylogenetic trees from protein-sequence data

    PhySortR: a fast, flexible tool for sorting phylogenetic trees in R

    Get PDF
    A frequent bottleneck in interpreting pylogenomic output is the need to screen often thousands of trees for features of interest, particularly robust clades of specific taxa, as evidence of rnonophyletic relationship and/or reticulated evolution. Here we present PhySortR, a fast, flexible R. package for classifying phylogenetic trees. Unlike existing utilities, PhySortR allows for identification of both exclusive and non-exclusive clades uniting the target taxa based on tip labels (i.e., leaves) on a tree, with customisable options to assess clades within the context of the whole tree. Using simulated and empirical datasets, we demonstrate the potential and scalability of PhySortR in analysis of thousands of phylogenetic trees without a priori assumption of tree-rooting, and in yielding readily interpretable trees that unambiguously satisfy the query. PhySortR is a command line tool that is freely available and easily automatable

    Anaplastic Lymphoma Kinase Spares Organ Growth during Nutrient Restriction in Drosophila

    Get PDF
    SummaryDeveloping animals survive periods of starvation by protecting the growth of critical organs at the expense of other tissues. Here, we use Drosophila to explore the as yet unknown mechanisms regulating this privileged tissue growth. As in mammals, we observe in Drosophila that the CNS is more highly spared than other tissues during nutrient restriction (NR). We demonstrate that anaplastic lymphoma kinase (Alk) efficiently protects neural progenitor (neuroblast) growth against reductions in amino acids and insulin-like peptides during NR via two mechanisms. First, Alk suppresses the growth requirement for amino acid sensing via Slimfast/Rheb/TOR complex 1. And second, Alk, rather than insulin-like receptor, primarily activates PI3-kinase. Alk maintains PI3-kinase signaling during NR as its ligand, Jelly belly (Jeb), is constitutively expressed from a glial cell niche surrounding neuroblasts. Together, these findings identify a brain-sparing mechanism that shares some regulatory features with the starvation-resistant growth programs of mammalian tumors.PaperCli

    Community Impacts of Prosopis Juliflora Invasion: Biogeographic and Congeneric Comparisons

    Get PDF
    We coordinated biogeographical comparisons of the impacts of an exotic invasive tree in its native and non-native ranges with a congeneric comparison in the non-native range. Prosopis juliflora is taxonomically complicated and with P. pallida forms the P. juliflora complex. Thus we sampled P. juliflora in its native Venezuela, and also located two field sites in Peru, the native range of Prosopis pallida. Canopies of Prosopis juliflora, a native of the New World but an invader in many other regions, had facilitative effects on the diversity of other species in its native Venezuela, and P. pallida had both negative and positive effects depending on the year, (overall neutral effects) in its native Peru. However, in India and Hawaii, USA, where P. juliflora is an aggressive invader, canopy effects were consistently and strongly negative on species richness. Prosopis cineraria, a native to India, had much weaker effects on species richness in India than P. juliflora. We carried out multiple congeneric comparisons between P. juliflora and P. cineraria, and found that soil from the rhizosphere of P. juliflora had higher extractable phosphorus, soluble salts and total phenolics than P. cineraria rhizosphere soils. Experimentally applied P. juliflora litter caused far greater mortality of native Indian species than litter from P. cineraria. Prosopis juliflora leaf leachate had neutral to negative effects on root growth of three common crop species of north-west India whereas P. cineraria leaf leachate had positive effects. Prosopis juliflora leaf leachate also had higher concentrations of total phenolics and L-tryptophan than P. cineraria, suggesting a potential allelopathic mechanism for the congeneric differences. Our results also suggest the possibility of regional evolutionary trajectories among competitors and that recent mixing of species from different trajectories has the potential to disrupt evolved interactions among native species

    Conformational changes and CO2-induced channel gating in connexin26

    Get PDF
    Connexins form large-pore channels that function either as dodecameric gap junctions or hexameric hemichannels to allow the regulated movement of small molecules and ions across cell membranes. Opening or closing of the channels is controlled by a variety of stimuli, and dysregulation leads to multiple diseases. An increase in the partial pressure of carbon dioxide (PCO2) has been shown to cause connexin26 (Cx26) gap junctions to close. Here, we use cryoelectron microscopy (cryo-EM) to determine the structure of human Cx26 gap junctions under increasing levels of PCO2. We show a correlation between the level of PCO2 and the size of the aperture of the pore, governed by the N-terminal helices that line the pore. This indicates that CO2 alone is sufficient to cause conformational changes in the protein. Analysis of the conformational states shows that movements at the N terminus are linked to both subunit rotation and flexing of the transmembrane helices

    Quantifying the Grimm Corpus: Transgressive and Transformative Bodies in the Grimms’ Fairy Tales

    Get PDF
    What do bodies mean in fairy tales? Donald Haase’s engagement with the Grimms’ fairy tales has offered some hints, ranging from his attention to feminist scholarship on the Grimms to his multifaceted review of recent Grimm scholarship that addresses various meanings of bodies in the language and translation of their tales. Inspired by Haase’s work and encouragement, I created a database that lists every mention or description of a body in the Grimms’ tales and in five other European tale collections. I detailed the results of this quantitative investigation in my dissertation, generally treating all the tale collections as part of one large corpus. In this essay, however, to add to the conversation that Haase has generated and curated, I refilter the data to solely examine which body parts (nouns, adjectives, and actions) appear in the Grimm tales. A major thematic focus is transgression and transformation, especially their gendered dimensions
    • …
    corecore