34 research outputs found
A dose ranging trial to optimize the dose of Rifampin in the treatment of tuberculosis
The study was funded by the EDCTP (European & Developing Countries Clinical Trials Partnership), NACCAP (Netherlands-African partnership for Capacity development and Clinical interventions Against Poverty-related diseases) and the Bill & Melinda Gates Foundation.Rationale: Rifampin at a dose of 10 mg/kg was introduced in 1971 based on pharmacokinetic, toxicity and cost considerations. Available data in mice and humans showed that an increase in dose may shorten the duration of tuberculosis treatment. Objectives: To evaluate the safety and tolerability, the pharmacokinetics and the extended early bactericidal activity of increasing doses of rifampin. Methods: Patients with drug-susceptible tuberculosis were enrolled into a control group of 8 patients receiving the standard dose of 10 mg/kg rifampin, followed by consecutive experimental groups with 15 patients each receiving rifampin 20 mg/kg, 25 mg/kg, 30 mg/kg and 35 mg/kg, respectively, for 14 days. In all patients isoniazid, pyrazinamide and ethambutol were added in standard doses for the second 7 days of treatment. Safety, pharmacokinetics of rifampin, and fall in bacterial load were assessed. Measurements and Main Results: Grade 1 and 2 adverse events were equally distributed between the five dose groups; there were 5 grade 3 events of which 1 was a possibly related hepatotoxicity. Areas under the time-concentration curves and peak serum concentrations of rifampin showed a more than proportional increase with dose. The daily fall in bacterial load over 14 days was 0.176, 0.168, 0.167, 0.265, and 0.261 log10CFU/ml sputum in the 10, 20, 25, 30 and 35 mg/kg groups respectively. Conclusions: Two weeks of rifampin up to 35 mg/kg was safe and well tolerated. There was a non-linear increase in exposure to rifampin without an apparent ceiling effect and a greater estimated fall in bacterial load in the higher dosing groups. Clinical trial registration available at www.clinicaltrials.gove, ID NCT01392911.PostprintPeer reviewe
Host-Directed Therapies for tackling Multi-Drug Resistant TB – learning from the Pasteur-Bechamp debates
Tuberculosis (TB) remains a global emergency causing an estimated 1.5 million deaths annually. For several decades the major focus of TB treatment has been on antibiotic development targeting Mycobacterium tuberculosis (M.tb). The lengthy TB treatment duration and poor treatment outcomes associated with multi-drug resistant TB (MDR-TB) are of major concern. The sparse new TB drug pipeline and widespread emergence of MDR-TB signal an urgent need for more innovative interventions to improve treatment outcomes. Building on the historical Pasteur-Bechamp debates on the role of the ‘microbe’ versus the ‘host internal milieu’ in disease causation, we make the case for parallel investments into host-directed therapies (HDTs). A range of potential HDTs are now available which require evaluation in randomized controlled clinical trials as adjunct therapies for shortening the duration of TB therapy and improving treatment outcomes for drug-susceptible TB and MDR-TB. Funder initiatives that may enable further research into HDTs are described
Rapid and Accurate Diagnosis of Pediatric Tuberculosis Disease (RaPaed-TB): A Diagnostic Accuracy Study for Pediatric Tuberculosis.
Introduction:
An estimated 1.2 million children develop tuberculosis (TB) every year with 240,000 dying because of missed diagnosis. Existing tools suffer from lack of accuracy and are often unavailable. Here, we describe the scientific and clinical methodology applied in RaPaed-TB, a diagnostic accuracy study.
Methods:
This prospective diagnostic accuracy study evaluating several candidate tests for TB was set out to recruit 1000 children <15 years with presumptive TB in 5 countries (Malawi, Mozambique, South Africa, Tanzania, India). Assessments at baseline included documentation of TB signs and symptoms, TB history, radiography, tuberculin skin test, HIV testing and spirometry. Respiratory samples for reference standard testing (culture, Xpert Ultra) included sputum (induced/spontaneous) or gastric aspirate, and nasopharyngeal aspirate (if <5 years). For novel tests, blood, urine and stool were collected. All participants were followed up at months 1 and 3, and month 6 if on TB treatment or unwell. The primary endpoint followed NIH-consensus statements on categorization of TB disease status for each participant. The study was approved by the sponsor's and all relevant local ethics committees. As a diagnostic accuracy study for a disease with an imperfect reference standard, RaPaed-TB was designed following a rigorous and complex methodology. This allows for the determination of diagnostic accuracy of novel assays and combination of testing strategies for optimal care for children, including high-risk groups (ie, very young, malnourished, children living with HIV). Being one of the largest of its kind, RaPaed-TB will inform the development of improved diagnostic approaches to increase case detection in pediatric TB
Towards host-directed therapies for tuberculosis
The treatment of tuberculosis is based on combinations of drugs that directly target Mycobacterium tuberculosis. A new global initiative is now focusing on a complementary approach of developing adjunct host-directed therapies.
Despite the availability of effective antibiotics for tuberculosis (TB) for the past half century, it remains an important global health problem; there are ~9 million active TB cases and ~1.5 million TB-induced deaths per year (see the World Health Organization (WHO) Global Tuberculosis Report in Further information). Health services around the world face major barriers to achieving optimal outcomes from current TB treatment regimens. These barriers include: the spread of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB); complex and toxic treatment regimens for MDR-TB; HIV co-infection; pharmacokinetic interactions between TB drugs and antiretroviral drugs; relapse; permanent damage to lung and other tissues; long-term functional disability; immune reconstitution inflammatory syndrome (IRIS); and co-morbidity with non-communicable diseases such as diabetes and chronic obstructive airway diseases. Another fundamental problem is the long duration of TB drug treatment (6 months for drug-sensitive TB and at least 18 months for drug-resistant TB) to achieve a cure, owing to the presence of dormant Mycobacterium tuberculosis bacilli that are phenotypically resistant to current classes of anti-TB drugs, which can only target bacterial replication.
There is therefore an urgent need for new TB treatments. However, the TB drug pipeline is thin1, 2. For the past 60 years, efforts to develop new treatments have focused on compounds and regimens that target M. tuberculosis directly. Recently, however, attention has focused on investigating a range of adjunct treatment interventions known as host-directed therapies (HDTs) that instead target the host response to infection. Here, we highlight the rationale for HDTs, the current portfolio of HDTs and their mechanisms of action, and a consortium-based approach to drive forward their evaluation in clinical trials
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20[superscript h]10[superscript m]54.71[superscript s] + 33°33[superscript ′]25.29[superscript ′′], and the other (B) is 7.45° in diameter and centered on 8[superscript h]35[superscript m]20.61[superscript s] - 46°49[superscript ′]25.151[superscript ′′]. We explored the frequency range of 50–1500 Hz and frequency derivative from 0 to -5 × 10[superscript -9] Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h[subscript 0] of 6.3 × 10[superscript -25], while at the high end of our frequency range we achieve a worst-case upper limit of 3.4 × 10[superscript -24] for all polarizations and sky locations.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio
First low frequency all-sky search for continuous gravitational wave signals
In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between −1.0×10−10 and +1.5×10−11 Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10−24 and 2×10−23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ∼2 with respect to the results of previous all-sky searches at frequencies below 80 H
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20[superscript h]10[superscript m]54.71[superscript s] + 33°33[superscript ′]25.29[superscript ′′], and the other (B) is 7.45° in diameter and centered on 8[superscript h]35[superscript m]20.61[superscript s] - 46°49[superscript ′]25.151[superscript ′′]. We explored the frequency range of 50–1500 Hz and frequency derivative from 0 to -5 × 10[superscript -9] Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h[subscript 0] of 6.3 × 10[superscript -25], while at the high end of our frequency range we achieve a worst-case upper limit of 3.4 × 10[superscript -24] for all polarizations and sky locations.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio