258 research outputs found
Aflatoxins in wildlife feed: Know how to protect wildlife
The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311
A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion
Fire is an important ecological disturbance in vegetated ecosystems across the globe, and also has considerable impacts on human infrastructure. Vegetation flammability is a key bottom-up control on fire regimes, and on the nature of individual fires. Although New Zealand (NZ) historically had low fire frequencies, anthropogenic fires have considerably impacted indigenous vegetation as humans used fire extensively to clear forests. Few studies of vegetation flammability have been undertaken in NZ, and only one has compared the flammability of indigenous plants; this was a qualitative assessment derived from expert opinion. We addressed this knowledge gap by measuring the flammability of terminal shoots from a range of trees and shrubs found in NZ. We quantified shoot flammability of 60 indigenous and exotic species, and compared our experimentally derived ranking with expert opinion. The most flammable species was the invasive exotic shrub Ulex europaeus, followed by Eucalyptus viminalis, Pomaderris kumeraho, Dacrydium cupressinum, and Lophozonia menziesii. Our experimentally derived ranking was strongly correlated with expert opinion, lending support to both methods. Our results are useful to ecologists seeking to understand how fires have and will influence NZâs ecosystems, and for fire managers identifying high-risk landscapes, and low flammability species for âgreen firebreaksâ
Chemical Cartography with APOGEE: Large-scale Mean Metallicity Maps of the Milky Way
We present Galactic mean metallicity maps derived from the first year of the
SDSS-III APOGEE experiment. Mean abundances in different zones of
Galactocentric radius (0 < R < 15 kpc) at a range of heights above the plane (0
< |z| < 3 kpc), are derived from a sample of nearly 20,000 stars with
unprecedented coverage, including stars in the Galactic mid-plane at large
distances. We also split the sample into subsamples of stars with low and
high-[{\alpha}/M] abundance ratios. We assess possible biases in deriving the
mean abundances, and find they are likely to be small except in the inner
regions of the Galaxy. A negative radial gradient exists over much of the
Galaxy; however, the gradient appears to flatten for R < 6 kpc, in particular
near the Galactic mid-plane and for low-[{\alpha}/M] stars. At R > 6 kpc, the
gradient flattens as one moves off of the plane, and is flatter at all heights
for high-[{\alpha}/M] stars than for low-[{\alpha}/M] stars. Alternatively,
these gradients can be described as vertical gradients that flatten at larger
Galactocentric radius; these vertical gradients are similar for both low and
high-[{\alpha}/M] populations. Stars with higher [{\alpha}/M] appear to have a
flatter radial gradient than stars with lower [{\alpha}/M]. This could suggest
that the metallicity gradient has grown steeper with time or, alternatively,
that gradients are washed out over time by migration of stars.Comment: 16 pages, 12 figures, submitted to A
Discovery of a Dynamical Cold Point in the Heart of the Sagittarius dSph Galaxy with Observations from the APOGEE Project
The dynamics of the core of the Sagittarius (Sgr) dwarf spheroidal (dSph)
galaxy are explored using high-resolution (R~22,500), H-band, near-infrared
spectra of over 1,000 giant stars in the central 3 deg^2 of the system, of
which 328 are identified as Sgr members. These data, among some of the earliest
observations from the SDSS-III/Apache Point Observatory Galactic Evolution
Experiment (APOGEE) and the largest published sample of high resolution Sgr
dSph spectra to date, reveal a distinct gradient in the velocity dispersion of
Sgr from 11-14 km/s for radii >0.8 degrees from center to a dynamical cold
point of 8 km/s in the Sgr center --- a trend differing from that found in
previous kinematical analyses of Sgr over larger scales that suggest a more or
less flat dispersion profile at these radii. Well-fitting mass models with
either cored and cusped dark matter distributions can be found to match the
kinematical results, although the cored profile succeeds with significantly
more isotropic stellar orbits than required for a cusped profile. It is
unlikely that the cold point reflects an unusual mass distribution. The
dispersion gradient may arise from variations in the mixture of populations
with distinct kinematics within the dSph; this explanation is suggested (e.g.,
by detection of a metallicity gradient across similar radii), but not
confirmed, by the present data. Despite these remaining uncertainties about
their interpretation, these early test data (including some from instrument
commissioning) demonstrate APOGEE's usefulness for precision dynamical studies,
even for fields observed at extreme airmasses.Comment: 15 pages, 3 figure
Long-Term Survivors of Metastatic Colorectal Cancer Treated with Systemic Chemotherapy Alone: A North Central Cancer Treatment Group Review of 3811 Patients, N0144
Although systemic chemotherapy in patients with unresectable metastatic colorectal cancer (mCRC) is palliative in nature, some patients experience long-term remission beyond 5 years consequent to treatment with chemotherapy alone
Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study
Abstract Aims/hypothesis Fenofibrate caused an acute, sustained plasma creatinine increase in the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) and Action to Control Cardiovascular Risk in Diabetes (ACCORD) studies. We assessed fenofibrateâs renal effects in a FIELD washout sub-study. Methods Type 2 diabetic patients (n=9795) aged 50 to 75 years were randomly assigned to fenofibrate (n=4895) or placebo (n=4900) for 5 years, after 6 weeks fenofibrate run-in. Albuminuria (urinary albumin:creatinine ratio) measured at baseline, year 2 and close-out) and estimated GFR, measured 4 to 6 monthly according to the Modification of Diet in Renal Disease study, were pre-specified endpoints. Plasma creatinine was re-measured 8 weeks after treatment cessation at close-out (washout sub-study, n=661). Analysis was by intention-to-treat. Results During fenofibrate run-in, plasma creatinine increased by 10.0 ”mol/l (p<0.001), but quickly reversed on placebo assignment. It remained higher on fenofibrate than on placebo, but the chronic rise was slower (1.62 ”mol/l vs 1.89 ”mol/l annually, p=0.01), with less estimated GFR loss (1.19 vs 2.03 ml minâ1 1.73 mâ2 annually, p<0.001). After washout, estimated GFR had fallen less from baseline on fenofibrate (1.9 ml minâ1 1.73 mâ2, p=0.065) than on placebo (6.9 ml minâ1 1.73 mâ2, p<0.001), sparing 5.0 ml minâ1 1.73 mâ2 (95% CI 2.3-7.7, p<0.001). Greater preservation of estimated GFR with fenofibrate was observed during greater reduction over the active run-in period (pre-randomisation) of triacylglycerol (n=186 vs 170) and baseline hypertriacylglycerolaemia (n=89 vs 80) alone, or combined with low HDL-cholesterol (n=71 vs 60). Fenofibrate reduced urine albumin concentrations and hence albumin:creatinine ratio by 24% vs 12% (p<0.001; mean difference 14% [95% CI 9-18]; p<0.001), with 14% less progression and 18% more albuminuria regression (p<0.001) than in participants on placebo. End-stage renal event frequency was similar (n=21 vs 26, p=0.48). Conclusions/interpretation Fenofibrate reduced albuminuria and slowed estimated GFR loss over 5 years, despite initially and reversibly increasing plasma creatinine. Fenofibrate may delay albuminuria and GFR impairment in type 2 diabetes patients. Confirmatory studies are merited. Trial registration: ISRCTN64783481 Funding: The study was funded by grants from Laboratoires Fournier, Dijon, France (now part of Solvay and Abbott Pharmaceuticals) and the NHMRC of Australia.Laboratoires Fournier, Dijon, France (now part of Solvay and Abbott Pharmaceuticals
- âŠ