31 research outputs found

    Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy

    Get PDF
    Recent studies have shown that seizures can spread and terminate across brain areas via a rich diversity of spatiotemporal patterns. In particular, while the location of the seizure onset area is usually in-variant across seizures in a same patient, the source of traveling (2-3 Hz) spike-and-wave discharges (SWDs) during seizures can either move with the slower propagating ictal wavefront or remain stationary at the seizure onset area. In addition, although most focal seizures terminate quasi-synchronously across brain areas, some evolve into distinct ictal clusters and terminate asynchronously. To provide a unifying perspective on the observed diversity of spatiotemporal dynamics for seizure spread and termination, we introduce here the Epileptor neural field model. Two mechanisms play an essential role. First, while the slow ictal wavefront propagates as a front in excitable neural media, the faster SWDs propagation results from coupled-oscillator dynamics. Second, multiple time scales interact during seizure spread, allowing for low-voltage fast-activity (>10 Hz) to hamper seizure spread and for SWD propagation to affect the way a seizure terminates. These dynamics, together with variations in short and long-range connectivity strength, play a central role on seizure spread, maintenance and termination. We demonstrate how Epileptor field models incorporating the above mechanisms predict the previously reported diversity in seizure spread patterns. Furthermore, we confirm the predictions for synchronous or asynchronous (clustered) seizure termination in human seizures recorded via stereotactic EEG. Our new insights into seizure spatiotemporal dynamics may also contribute to the development of new closed-loop neuromodulation therapies for focal epilepsy.Comment: 10 pages + 9 pages Supporting Information (SI), 7 figures, 1 SI table, 7 SI figure

    Heterogeneity of time delays determines synchronization of coupled oscillators

    Get PDF
    Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries. These results find direct application in the study of brain oscillations

    The critical dynamics of hippocampal seizures.

    Get PDF
    Epilepsy is defined by the abrupt emergence of harmful seizures, but the nature of these regime shifts remains enigmatic. From the perspective of dynamical systems theory, such critical transitions occur upon inconspicuous perturbations in highly interconnected systems and can be modeled as mathematical bifurcations between alternative regimes. The predictability of critical transitions represents a major challenge, but the theory predicts the appearance of subtle dynamical signatures on the verge of instability. Whether such dynamical signatures can be measured before impending seizures remains uncertain. Here, we verified that predictions on bifurcations applied to the onset of hippocampal seizures, providing concordant results from in silico modeling, optogenetics experiments in male mice and intracranial EEG recordings in human patients with epilepsy. Leveraging pharmacological control over neural excitability, we showed that the boundary between physiological excitability and seizures can be inferred from dynamical signatures passively recorded or actively probed in hippocampal circuits. Of importance for the design of future neurotechnologies, active probing surpassed passive recording to decode underlying levels of neural excitability, notably when assessed from a network of propagating neural responses. Our findings provide a promising approach for predicting and preventing seizures, based on a sound understanding of their dynamics

    On the spatiotemporal dynamics and couplings across epileptogenic networks

    Get PDF
    International audienc

    Reward-­based online learning in non­stationary environments: adapting a P300­-speller with a ``Backspace’’ key

    Full text link
    International audienceWe adapt a policy gradient approach to the problem of reward-based online learning of a non-invasive EEG-based ``P300''-speller. We first clarify the nature of the P300-speller classification problem and present a general regularized gradient ascent formula. We then show that when the reward is immediate and binary (namely ``bad response'' or ``good response''), each update is expected to improve the classifier accuracy, whether the actual response is correct or not. We also estimate the robustness of the method to occasional mistaken rewards, i.e. show that the learning efficacy may only linearly decrease with the rate of invalid rewards. The effectiveness of our approach is tested in a series of simulations reproducing the conditions of real experiments. We show in a first experiment that a systematic improvement of the spelling rate is obtained for all subjects in the absence of initial calibration. In a second experiment, we consider the case of the online recovery that is expected to follow unforeseen impairments. Combined with a specific failure detection algorithm, the spelling error information (typically contained in a ``backspace'' hit), is shown useful for the policy gradient to adapt the P300 classifier to the new situation, provided the feedback is reliable enough (namely having a reliability greater than 70%)

    What is the Functional Role of iEEG Oscillations in Neural Processing and Cognitive Functions?: A Guide for Cognitive Neuroscientists

    Full text link
    International audienceOscillations of the electric field generated by neuronal populations are often observed in intracranial EEG recordings from human cortical and subcortical brain regions. The functional relevance of these oscillations for neural processing and cognitive functions remains a debated issue in modern neuroscience. In this chapter, we review evidence that iEEG oscillations constitute a key mechanism in the functional integration of neuronal activity across temporal and spatial scales. We focus on the potential role of cortical oscillations in cognitive processes, and particularly speech perception and production, which involve diverse brain regions and temporal scales in a structured hierarchy, as an ideal testbed for outlining the possible insights that iEEG oscillations offer on cognitive functions

    Individual brain structure and modelling predict seizure propagation

    Full text link
    International audienceSee Lytton (doi:10.1093/awx018) for a scientific commentary on this article.Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions
    corecore