4,302 research outputs found
The partition function versus boundary conditions and confinement in the Yang-Mills theory
We analyse dependence of the partition function on the boundary condition for
the longitudinal component of the electric field strength in gauge field
theories. In a physical gauge the Gauss law constraint may be resolved
explicitly expressing this component via an integral of the physical
transversal variables. In particular, we study quantum electrodynamics with an
external charge and SU(2) gluodynamics. We find that only a charge distribution
slowly decreasing at spatial infinity can produce a nontrivial dependence in
the Abelian theory. However, in gluodynamics for temperatures below some
critical value the partition function acquires a delta-function like dependence
on the boundary condition, which leads to colour confinement.Comment: 14 pages, RevTeX, submitted to Phys. Rev.
Is it possible to assign physical meaning to field theory with higher derivatives?
To overcome the difficulties with the energy indefiniteness in field theories
with higher derivatives, it is supposed to use the mechanical analogy, the
Timoshenko theory of the transverse flexural vibrations of beams or rods well
known in mechanical engineering. It enables one to introduce the notion of a
"mechanical" energy in such field models that is wittingly positive definite.
This approach can be applied at least to the higher derivative models which
effectively describe the extended localized solutions in usual first order
field theories (vortex solutions in Higgs models and so on). Any problems with
a negative norm ghost states and unitarity violation do not arise here.Comment: 16 pp, LaTeX, JINR E2-93-19
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
The results of vacuum-arc deposition of thin ZrO₂coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF and nanoindentation method. It was revealed the formation of polycrystalline ZrO₂ films of monoclinic modification with average grain size 25 nm. The influence of the ZrO₂ coating in terms of its barrier properties for corrosion in quasi-physiological 0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating on specimens in the physiological solution environment
Conformational transitions of heteropolymers in dilute solutions
In this paper we extend the Gaussian self-consistent method to permit study
of the equilibrium and kinetics of conformational transitions for
heteropolymers with any given primary sequence. The kinetic equations earlier
derived by us are transformed to a form containing only the mean squared
distances between pairs of monomers. These equations are further expressed in
terms of instantaneous gradients of the variational free energy. The method
allowed us to study exhaustively the stability and conformational structure of
some periodic and random aperiodic sequences. A typical phase diagram of a
fairly long amphiphilic heteropolymer chain is found to contain phases of the
extended coil, the homogeneous globule, the micro-phase separated globule, and
a large number of frustrated states, which result in conformational phases of
the random coil and the frozen globule. We have also found that for a certain
class of sequences the frustrated phases are suppressed. The kinetics of
folding from the extended coil to the globule proceeds through non-equilibrium
states possessing locally compacted, but partially misfolded and frustrated,
structure. This results in a rather complicated multistep kinetic process
typical of glassy systems.Comment: 15 pages, RevTeX, 20 ps figures, accepted for publication in Phys.
Rev.
Hydration of a B-DNA Fragment in the Method of Atom-atom Correlation Functions with the Reference Interaction Site Model Approximation
We propose an efficient numerical algorithm for solving integral equations of
the theory of liquids in the Reference Interaction Site Model (RISM)
approximation for infinitely dilute solution of macromolecules with a large
number of atoms. The algorithm is based on applying the nonstationary iterative
methods for solving systems of linear algebraic equations. We calculate the
solvent-solute atom-atom correlation functions for a fragment of the B-DNA
duplex d(GGGGG).d(CCCCC) in infinitely dilute aqueous solution. The obtained
results are compared with available experimental data and results from computer
simulations.Comment: 9 pages, RevTeX, 9 pages of ps figures, accepted for publications in
JC
The development of blockchain technology in Russia : outlook and trends
Purpose: The article addresses the issue of new scientific decisions shaping with respect to the study of problems, current trends and perspectives of blockchain technology usage in the Russian Federation. Design/methodology/approach: To achieve the objectives of this study the increasing interest to blockchain technology in Russia was discussed. Findings: The article determined main problems in blockchain technology which includes gaps in legislative regulation; the existence of a considerable number of projects that are undergoing the development stage and that have not proved own economic feasibility yet; incomplete understanding of the blockchain spheres’ implementation by state officials, society and business representatives as well as expected outcomes according to the amount and time of their receiving; disputes on cryptocurrencies turnover in the country’s territory and their influence in the national economy. Practical implications: The study has demonstrated the interest growth mainly by businesses to the usage of blockchain technology in order to improve own competitiveness and to obtain additional benefits, including the form of their profits. Originality/value: The research has also determined the area of further key studies in blockchain technology usage in Russia and the world.peer-reviewe
Torsional-flexural buckling of unevenly battened columns under eccentrical compressive loading
In this paper, an analytical model is developed to determine the torsional-flexural buckling load of a channel column braced by unevenly distributed batten plates. Solutions of the critical-buckling loads were derived for three boundary cases using the energy method in which the rotating angle between the adjacent battens was presented in the form of a piecewise cubic Hermite interpolation (PCHI) for unequally spaced battens. The validity of the PCHI method was numerically verified by the classic analytical approach for evenly battened
columns and a finite-element analysis for unevenly battened ones, respectively. Parameter studies were then performed to examine the effects of loading eccentricities on the torsional-flexural buckling capacity of both evenly and unevenly battened columns. Design parameters taken into account were the ratios of pure torsional buckling load to pure flexural–buckling load, the number and position of battens, and the ratio of the relative extent of the eccentricity. Numerical results were summarized into a series of relative curves indicating the combination of the buckling load and corresponding moments for various buckling ratios.National Natural Science Foundation of China (NSFC) under grant number (No.) 51175442 and Sichuan International Cooperation Research Project under grant No. 2014HH002
Dynamic Behavior in Piezoresponse Force Microscopy
Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM)
implemented on a beam-deflection atomic force microscope (AFM) is analyzed
using a combination of modeling and experimental measurements. The PFM signal
comprises contributions from local electrostatic forces acting on the tip,
distributed forces acting on the cantilever, and three components of the
electromechanical response vector. These interactions result in the bending and
torsion of the cantilever, detected as vertical and lateral PFM signals. The
relative magnitudes of these contributions depend on geometric parameters of
the system, the stiffness and frictional forces of tip-surface junction, and
operation frequencies. The dynamic signal formation mechanism in PFM is
analyzed and conditions for optimal PFM imaging are formulated. The
experimental approach for probing cantilever dynamics using frequency-bias
spectroscopy and deconvolution of electromechanical and electrostatic contrast
is implemented.Comment: 65 pages, 15 figures, high quality version available upon reques
Concentration-dependent self-diffusion of adsorbates in mesoporous materials
The pulsed-field gradient NMR method has been applied to study self-diffusion of liquids in mesoporous materials with different pore sizes and morphologies as a function of pore loading. It is found that the effective diffusivities of adsorbate molecules in mesopores at partial loadings are related to two mechanisms, the Knudsen diffusion through the gaseous phase in the pore space and the diffusion within the layer of molecules adsorbed on the pore walls. The relative contributions of these modes, which are determined by the details of the interphase equilibrium, change with variation of the pore loading, leading to a complex behavior of the effective self-diffusion coefficient. The impact of the pore size and the adsorbate-surface interaction on self-diffusion is elucidated. Possible reasons for an experimentally obtained hysteresis in the diffusivities measured on adsorption and desorption in mesopores are discussed. © 2005 Elsevier Inc. All rights reserved
Surface self-diffusion of organic molecules adsorbed in porous silicon
The pulsed field gradient nuclear magnetic resonance method has been employed to probe self-diffusion of organic guest molecules adsorbed in porous silicon with a 3.6 nm pore size. The molecular self-diffusion coefficient and intrapore adsorption were simultaneously measured as a function of the external vapor pressure. The latter was varied in a broad range to provide pore loading from less than monolayer surface coverage to full pore saturation. The measured diffusivities are found to be well-correlated with the adsorption isotherms. At low molecular concentrations in the pores, corresponding to surface coverages of less than one monolayer, the self-diffusion coefficient strongly increases with increasing concentration. This observation is attributed to the occurrence of activated diffusion on a heterogeneous surface. Additional experiments in a broad temperature range and using binary mixtures confirm this hypothesis. © 2005 American Chemical Society
- …