5,525 research outputs found

    Structure and stability of chiral beta-tapes: a computational coarse-grained approach

    Full text link
    We present two coarse-grained models of different levels of detail for the description of beta-sheet tapes obtained from equilibrium self-assembly of short rationally designed oligopeptides in solution. Here we only consider the case of the homopolymer oligopeptides with the identical sidegroups attached, in which the tapes have a helicoid surface with two equivalent sides. The influence of the chirality parameter on the geometrical characteristics, namely the diameter, inter-strand distance and pitch, of the tapes have been investigated. The two models are found to produceequivalent results suggesting a considerable degree of universality in conformations of the tapes.Comment: 24 pages, 5 PS figures. Accepted to J. Chem. Phy

    On the conformational structure of a stiff homopolymer

    Full text link
    In this paper we complete the study of the phase diagram and conformational states of a stiff homopolymer. It is known that folding of a sufficiently stiff chain results in formation of a torus. We find that the phase diagram obtained from the Gaussian variational treatment actually contains not one, but several distinct toroidal states distinguished by the winding number. Such states are separated by first order transition curves terminating in critical points at low values of the stiffness. These findings are further supported by off-lattice Monte Carlo simulation. Moreover, the simulation shows that the kinetics of folding of a stiff chain passes through various metastable states corresponding to hairpin conformations with abrupt U-turns.Comment: 9 pages, 16 PS figures. Journal of Chemical Physics, in pres

    Monte Carlo simulations of infinitely dilute solutions of amphiphilic diblock star copolymers

    Full text link
    Single-chain Monte Carlo simulations of amphiphilic diblock star copolymers were carried out in continuous space using implicit solvents. Two distinct architectures were studied: stars with the hydrophobic blocks attached to the core, and stars with the polar blocks attached to the core, with all arms being of equal length. The ratio of the lengths of the hydrophobic block to the length of the polar block was varied from 0 to 1. Stars with 3, 6, 9 or 12 arms, each of length 10, 15, 25, 50, 75 and 100 Kuhn segments were analysed. Four distinct types of conformations were observed for these systems. These, apart from studying the snapshots from the simulations, have been quantitatively characterised in terms of the mean-squared radii of gyration, mean-squared distances of monomers from the centre-of-mass, asphericity indices, static scattering form factors in the Kratky representation as well as the intra-chain monomer-monomer radial distribution functions.Comment: 12 pages, 11 ps figures. Accepted for publication in J. Chem. Phy

    Conformations of dendrimers in dilute solution

    Full text link
    Conformations of isolated homo- dendrimers of G=1-7 generations with D=1-6 spacers have been studied in the good and poor solvents, as well as across the coil-to-globule transition, by means of a version of the Gaussian self-consistent (GSC) method and Monte Carlo (MC) simulation in continuous space based on the same coarse-grained model. The latter includes harmonic springs between connected monomers and the pair-wise Lennard-Jones potential with a hard core repulsion. The scaling law for the dendrimer size, the degrees of bond stretching and steric congestion, as well as the radial density, static structure factor, and asphericity have been analysed. It is also confirmed that while smaller dendrimers have a dense core, larger ones develop a hollow domain at some separation from the centre.Comment: RevTeX, 14 pages, 19 PS figures, Accepted for publication in J. Chem. Phy
    • …
    corecore