322 research outputs found
Magnetic nanocomposites at microwave frequencies
Most conventional magnetic materials used in the electronic devices are
ferrites, which are composed of micrometer-size grains. But ferrites have small
saturation magnetization, therefore the performance at GHz frequencies is
rather poor. That is why functionalized nanocomposites comprising magnetic
nanoparticles (e.g. Fe, Co) with dimensions ranging from a few nm to 100 nm,
and embedded in dielectric matrices (e.g. silicon oxide, aluminium oxide) have
a significant potential for the electronics industry. When the size of the
nanoparticles is smaller than the critical size for multidomain formation,
these nanocomposites can be regarded as an ensemble of particles in
single-domain states and the losses (due for example to eddy currents) are
expected to be relatively small. Here we review the theory of magnetism in such
materials, and we present a novel measurement method used for the
characterization of the electromagnetic properties of composites with
nanomagnetic insertions. We also present a few experimental results obtained on
composites consisting of iron nanoparticles in a dielectric matrix.Comment: 20 pages, 10 figures, 5 table
Synthesis, Stability and Relaxivity of TEEPO-Met : An Organic Radical as a Potential Tumour Targeting Contrast Agent for Magnetic Resonance Imaging
Cancer is a widespread and life-threatening disease and its early-stage diagnosis is vital. One of the most effective, non-invasive tools in medical diagnostics is magnetic resonance imaging (MRI) with the aid of contrast agents. Contrast agents that are currently in clinical use contain metals, causing some restrictions in their use. Also, these contrast agents are mainly non-specific without any tissue targeting capabilities. Subsequently, the interest has notably increased in the research of organic, metal-free contrast agents. This study presents a new, stable organic radical, TEEPO-Met, where a radical moiety 2,2,6,6-tetraethylpiperidinoxide (TEEPO) is attached to an amino acid, methionine (Met), as a potentially tumour-targeting moiety. We describe the synthesis, stability assessment with electron paramagnetic resonance (EPR) spectroscopy and relaxation enhancement abilities by an in vitro nuclear magnetic resonance (NMR) and phantom MRI studies of TEEPO-Met. The new compound proved to be stable notably longer than the average imaging time in conditions mimicking a biological matrix. Also, it significantly reduced the relaxation times of water, making it a promising candidate as a novel tumour targeting contrast agent for MRI.Peer reviewe
Kinetic Roughening in Slow Combustion of Paper
We present results from an experimental study on the kinetic roughening of slow combustion fronts in paper sheets. The sheets were positioned inside a combustion chamber and ignited from the top to minimize convection effects. The emerging fronts were videotaped and digitized to obtain their time-dependent heights. The data were analyzed by calculating two-point correlation functions in the saturated regime. Both the growth and roughening exponents were determined and found consistent with the Kardar-Parisi-Zhang equation, in agreement with recent theoretical work.Peer reviewe
Twisting Graphene Nanoribbons into Carbon Nanotubes
Although carbon nanotubes consist of honeycomb carbon, they have never been
fabricated from graphene directly. Here, it is shown by quantum
molecular-dynamics simulations and classical continuum-elasticity modeling,
that graphene nanoribbons can, indeed, be transformed into carbon nanotubes by
means of twisting. The chiralities of the tubes thus fabricated can be not only
predicted but also externally controlled. This twisting route is an opportunity
for nanofabrication, and is easily generalizable to ribbons made of other
planar nanomaterials.Comment: 9 pages, 10 figure
Scaling Exponents in the Incommensurate Phase of the Sine-Gordon and U(1) Thirring Models
In this paper we study the critical exponents of the quantum sine-Gordon and
U(1) Thirring models in the incommensurate phase. This phase appears when the
chemical potential exceeds a critical value and is characterized by a
finite density of solitons. The low-energy sector of this phase is critical and
is described by the Gaussian model (Tomonaga-Luttinger liquid) with the
compactification radius dependent on the soliton density and the sine-Gordon
model coupling constant .
For a fixed value of , we find that the Luttinger parameter is
equal to 1/2 at the commensurate-incommensurate transition point and approaches
the asymptotic value away from it. We describe a possible phase
diagram of the model consisting of an array of weakly coupled chains. The
possible phases are Fermi liquid, Spin Density Wave, Spin-Peierls and Wigner
crystal.Comment: 10pages; Improved version; Submitted to Physical Review
In Vivo Evaluation of the Potential of High-Frequency Ultrasound for Arthroscopic Examination of the Shoulder Joint
Objective. Accurate arthroscopic evaluation of cartilage lesions could significantly improve the outcome of repair surgery. In this study, we investigated for the first time the potential of intra-articular ultrasound as an arthroscopic tool for grading cartilage defects in the human shoulder joint in vivo and compared the outcome to results from arthroscopic evaluation and magnetic resonance imaging findings. Design. A total of 26 sites from 9 patients undergoing routine shoulder arthroscopy were quantitatively evaluated with a clinical intravascular (40MHz) ultrasound imaging system, using the regular arthroscopy portals. Reflection coefficient (R), integrated reflection coefficient (IRC), apparent integrated backscattering (AIB), and ultrasound roughness index (URI) were calculated, and high-resolution ultrasound images were obtained per site. Each site was visually graded according to the International Cartilage Repair Society (ICRS) system. "Ultrasound scores" corresponding to the ICRS system were determined from the ultrasound images. Magnetic resonance imaging was conducted and cartilage integrity at each site was classified into 5 grades (0 = normal, 4 = severely abnormal) by a radiologist. Results. R and IRC were lower at sites with damaged cartilage surface (P = 0.033 and P = 0.043, respectively) and correlated with arthroscopic ICRS grades (r (s) = -0.444, P = 0.023 and r (s) = -0.426, P = 0.03, respectively). Arthroscopic ICRS grades and ultrasound scores were significantly correlated (rs = 0.472, P = 0.015), but no significant correlation was found between magnetic resonance imaging data and other parameters. Conclusion. The results suggest that ultrasound arthroscopy could facilitate quantitative clinical appraisal of articular cartilage integrity in the shoulder joint and provide information on cartilage lesion depth and severity for quantitative diagnostics in surgery.Peer reviewe
Size distributions, sources and source areas of water-soluble organic carbon in urban background air
International audienceThis paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC), inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III) by using a micro-orifice uniform deposit impactor (MOUDI). The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC) and monosaccharide anhydrides from the filter samples. During the measurements gravimetric mass in the MOUDI collections varied between 3.4 and 55.0 ?g m?3 and the WSOC concentration was between 0.3 and 7.4 ?g m?3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6) comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1?10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1?10 aerosol mass. Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas). Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs) and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that especially the oxidation products of biogenic VOCs in summer had a clear effect on WSOC concentrations
Parvovirus Induced Alterations in Nuclear Architecture and Dynamics
The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications
Interaction Properties of the Periodic and Step-like Solutions of the Double-Sine-Gordon Equation
The periodic and step-like solutions of the double-Sine-Gordon equation are
investigated, with different initial conditions and for various values of the
potential parameter . We plot energy and force diagrams, as functions
of the inter-soliton distance for such solutions. This allows us to consider
our system as an interacting many-body system in 1+1 dimension. We therefore
plot state diagrams (pressure vs. average density) for step-like as well as
periodic solutions. Step-like solutions are shown to behave similarly to their
counterparts in the Sine-Gordon system. However, periodic solutions show a
fundamentally different behavior as the parameter is increased. We
show that two distinct phases of periodic solutions exist which exhibit
manifestly different behavior. Response functions for these phases are shown to
behave differently, joining at an apparent phase transition point.Comment: 17pages, 15 figure
- …