263 research outputs found

    Seven ways to improve example-based single image super resolution

    Full text link
    In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2) use of large dictionaries with efficient search structures, 3) cascading, 4) image self-similarities, 5) back projection refinement, 6) enhanced prediction by consistency check, and 7) context reasoning. We validate our seven techniques on standard SR benchmarks (i.e. Set5, Set14, B100) and methods (i.e. A+, SRCNN, ANR, Zeyde, Yang) and achieve substantial improvements.The techniques are widely applicable and require no changes or only minor adjustments of the SR methods. Moreover, our Improved A+ (IA) method sets new state-of-the-art results outperforming A+ by up to 0.9dB on average PSNR whilst maintaining a low time complexity.Comment: 9 page

    Some like it hot - visual guidance for preference prediction

    Full text link
    For people first impressions of someone are of determining importance. They are hard to alter through further information. This begs the question if a computer can reach the same judgement. Earlier research has already pointed out that age, gender, and average attractiveness can be estimated with reasonable precision. We improve the state-of-the-art, but also predict - based on someone's known preferences - how much that particular person is attracted to a novel face. Our computational pipeline comprises a face detector, convolutional neural networks for the extraction of deep features, standard support vector regression for gender, age and facial beauty, and - as the main novelties - visual regularized collaborative filtering to infer inter-person preferences as well as a novel regression technique for handling visual queries without rating history. We validate the method using a very large dataset from a dating site as well as images from celebrities. Our experiments yield convincing results, i.e. we predict 76% of the ratings correctly solely based on an image, and reveal some sociologically relevant conclusions. We also validate our collaborative filtering solution on the standard MovieLens rating dataset, augmented with movie posters, to predict an individual's movie rating. We demonstrate our algorithms on howhot.io which went viral around the Internet with more than 50 million pictures evaluated in the first month.Comment: accepted for publication at CVPR 201

    A Study of Forward-Forward Algorithm for Self-Supervised Learning

    Full text link
    Self-supervised representation learning has seen remarkable progress in the last few years, with some of the recent methods being able to learn useful image representations without labels. These methods are trained using backpropagation, the de facto standard. Recently, Geoffrey Hinton proposed the forward-forward algorithm as an alternative training method. It utilizes two forward passes and a separate loss function for each layer to train the network without backpropagation. In this study, for the first time, we study the performance of forward-forward vs. backpropagation for self-supervised representation learning and provide insights into the learned representation spaces. Our benchmark employs four standard datasets, namely MNIST, F-MNIST, SVHN and CIFAR-10, and three commonly used self-supervised representation learning techniques, namely rotation, flip and jigsaw. Our main finding is that while the forward-forward algorithm performs comparably to backpropagation during (self-)supervised training, the transfer performance is significantly lagging behind in all the studied settings. This may be caused by a combination of factors, including having a loss function for each layer and the way the supervised training is realized in the forward-forward paradigm. In comparison to backpropagation, the forward-forward algorithm focuses more on the boundaries and drops part of the information unnecessary for making decisions which harms the representation learning goal. Further investigation and research are necessary to stabilize the forward-forward strategy for self-supervised learning, to work beyond the datasets and configurations demonstrated by Geoffrey Hinton
    • …
    corecore