54 research outputs found

    Spatially Selective Deep Non-linear Filters for Speaker Extraction

    Full text link
    In a scenario with multiple persons talking simultaneously, the spatial characteristics of the signals are the most distinct feature for extracting the target signal. In this work, we develop a deep joint spatial-spectral non-linear filter that can be steered in an arbitrary target direction. For this we propose a simple and effective conditioning mechanism, which sets the initial state of the filter's recurrent layers based on the target direction. We show that this scheme is more effective than the baseline approach and increases the flexibility of the filter at no performance cost. The resulting spatially selective non-linear filters can also be used for speech separation of an arbitrary number of speakers and enable very accurate multi-speaker localization as we demonstrate in this paper.Comment: Submitted to ICASSP 202

    Uncertainty Estimation in Deep Speech Enhancement Using Complex Gaussian Mixture Models

    Full text link
    Single-channel deep speech enhancement approaches often estimate a single multiplicative mask to extract clean speech without a measure of its accuracy. Instead, in this work, we propose to quantify the uncertainty associated with clean speech estimates in neural network-based speech enhancement. Predictive uncertainty is typically categorized into aleatoric uncertainty and epistemic uncertainty. The former accounts for the inherent uncertainty in data and the latter corresponds to the model uncertainty. Aiming for robust clean speech estimation and efficient predictive uncertainty quantification, we propose to integrate statistical complex Gaussian mixture models (CGMMs) into a deep speech enhancement framework. More specifically, we model the dependency between input and output stochastically by means of a conditional probability density and train a neural network to map the noisy input to the full posterior distribution of clean speech, modeled as a mixture of multiple complex Gaussian components. Experimental results on different datasets show that the proposed algorithm effectively captures predictive uncertainty and that combining powerful statistical models and deep learning also delivers a superior speech enhancement performance.Comment: 5 pages, 4 figure

    DiffPhase: Generative Diffusion-based STFT Phase Retrieval

    Full text link
    Diffusion probabilistic models have been recently used in a variety of tasks, including speech enhancement and synthesis. As a generative approach, diffusion models have been shown to be especially suitable for imputation problems, where missing data is generated based on existing data. Phase retrieval is inherently an imputation problem, where phase information has to be generated based on the given magnitude. In this work we build upon previous work in the speech domain, adapting a speech enhancement diffusion model specifically for STFT phase retrieval. Evaluation using speech quality and intelligibility metrics shows the diffusion approach is well-suited to the phase retrieval task, with performance surpassing both classical and modern methods.Comment: Submitted to ICASSP 202

    Audio-Visual Speech Enhancement with Score-Based Generative Models

    Full text link
    This paper introduces an audio-visual speech enhancement system that leverages score-based generative models, also known as diffusion models, conditioned on visual information. In particular, we exploit audio-visual embeddings obtained from a self-super\-vised learning model that has been fine-tuned on lipreading. The layer-wise features of its transformer-based encoder are aggregated, time-aligned, and incorporated into the noise conditional score network. Experimental evaluations show that the proposed audio-visual speech enhancement system yields improved speech quality and reduces generative artifacts such as phonetic confusions with respect to the audio-only equivalent. The latter is supported by the word error rate of a downstream automatic speech recognition model, which decreases noticeably, especially at low input signal-to-noise ratios.Comment: Submitted to ITG Conference on Speech Communicatio

    Efficient Transformer-based Speech Enhancement Using Long Frames and STFT Magnitudes

    Full text link
    The SepFormer architecture shows very good results in speech separation. Like other learned-encoder models, it uses short frames, as they have been shown to obtain better performance in these cases. This results in a large number of frames at the input, which is problematic; since the SepFormer is transformer-based, its computational complexity drastically increases with longer sequences. In this paper, we employ the SepFormer in a speech enhancement task and show that by replacing the learned-encoder features with a magnitude short-time Fourier transform (STFT) representation, we can use long frames without compromising perceptual enhancement performance. We obtained equivalent quality and intelligibility evaluation scores while reducing the number of operations by a factor of approximately 8 for a 10-second utterance.Comment: Accepted at Interspeech 202
    • …
    corecore