4 research outputs found

    Prognostic significance of nuclear expression of UMP-CMP kinase in triple negative breast cancer patients

    Get PDF
    We have previously identified UMP-CMP kinase (CMPK1) as a prognostic marker for triple negative breast cancer (TNBC) by mass spectrometry (MS). In this study we evaluated CMPK1 association to prognosis in an independent set of samples by immunohistochemistry (IHC) and assessed biological pathways associated to its expression through gene set enrichment analysis (GSEA). A total of 461 TNBC paraffin-embedded tissues were collected from different academic hospitals in Europe, incorporated into tissue micro-arrays (TMA), and stained for CMPK1 expression. We also collected gene expression data of 60 samples, which were also present in the TMA, for GSEA correlation analysis. CMPK1 IHC staining showed both cytoplasmic and nuclear components. While cytoplasmic CMPK1 did not show any association to metastasis free survival (MFS), nuclear CMPK1 was associated to poor prognosis independently from other prognostic factors in stratified Cox regression analyses. GSEA correlation analysis of the nuclear CMPK1-stratified gene expression dataset showed a significant enrichment of extracellular matrix (ECM; positive correlation) and cell cycle (negative correlation) associated genes. We have shown here that nuclear CMPK1 is indicative of poor prognosis in TNBCs and that its expression may be related to dysregulation of ECM and cell cycle molecules

    High-density SNP arrays improve detection of <i>HER2 </i>amplification and polyploidy in breast tumors

    No full text
    BACKGROUND: Human epidermal growth factor receptor-2 (HER2) overexpression and gene amplification are currently established by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), respectively. This study investigates whether high-density single nucleotide polymorphism (SNP) arrays can provide additional diagnostic power to assess HER2 gene status. METHODS: DNA from 65 breast tumor samples previously diagnosed by HER2 IHC and FISH analysis were blinded and examined for HER2 copy number variation employing SNP array analysis. RESULTS: SNP array analysis identified 24 (37%) samples with selective amplification or imbalance of the HER2 region in the q-arm of chromosome 17. In contrast, only 15 (23%) tumors were found to have HER2 amplification by IHC and FISH analysis. In total, there was a discrepancy in 19 (29%) samples between SNP array and IHC/FISH analysis. In 12 of these cases, the discrepancy towards FISH could be attributed to concomitant amplification or deletion of the centromeric region, which harbors the FISH reference probe sequence. In 3 tumors, repeated IHC/FISH analysis revealed that the original IHC/FISH analysis had failed to indicate the correct HER2 expression level. Finally, the SNP array analysis revealed that more than two thirds of the samples exhibited polyploidy that was unrecognized by conventional FISH. CONCLUSIONS: Collectively, the data show that determination of HER2 copy number variations by SNP array-based genomic segmentation analysis is an effective supplement to IHC/FISH HER2 analysis that, by providing additional diagnostic sensitivity and accuracy, may elect more women for targeted treatment with HER2 inhibitors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-015-1035-1) contains supplementary material, which is available to authorized users

    Ferritin heavy chain in triple negative breast cancer: A favorable prognostic marker that relates to a cluster of differentiation 8 positive (CD8+) effector t-cell response

    No full text
    Ferritin heavy chain (FTH1) is a 21-kDa subunit of the ferritin complex, known for its role in iron metabolism, and which has recently been identified as a favorable prognostic protein for triple negative breast cancer (TNBC) patients. Currently, it is not well understood how FTH1 contributes to an anti-tumor response. Here, we explored whether expression and cellular compartmentalization of FTH1 correlates to an effective immune response in TNBC patients. Analysis of the tumor tissue transcriptome, complemented with in silico pathway analysis, revealed that FTH1 was an integral part of an immunomodulatory network of cytokine signaling, adaptive immunity, and cell death. These findings were confirmed using mass spectrometry (MS)-derived proteomic data, and immunohistochemical staining of tissue microarrays. We observed that FTH1 is localized in both the cytoplasm and/or nucleus of cancer cells. However, high cytoplasmic (c) FTH1 was associated with favorable prognosis (Log-rank p = 0.001), whereas nuclear (n) FTH1 staining was associated with adverse prognosis (Log-rank p = 0.019). cFTH1 staining significantly correlated with total FTH1 expression in TNBC tissue samples, as measure
    corecore