250 research outputs found
Electrodeposition of adherent submicron to micron thick manganese dioxide films with optimized current collector interface for 3D Li-ion electrodes
Three-dimensional (3D) configuration of high-performance energy storage devices has been the subject of ongoing investigations targeting their integration in autonomous microelectronic systems. In this study we demonstrate a route toward the realization of high capacity cathode material for 3D thin-film lithium-ion (Li-ion) batteries. Electrolytic manganese dioxide (EMD) film can be applied as a Li-ion intercalation electrode upon its conversion to lithium manganese dioxide (LiMn2O4 or LMO) by solid-state reaction. The main challenges of depositing thicker EMD film directly on the current collector often lay in achieving a good film adhesion and preventing oxidation of non-noble current collectors such as TiN, Ni. To improve the adhesion of the EMD films we modify the surface of the current collector by means of thin-film or seed layer coatings, which also prevent the oxidation of the underlying current collector substrate during the anodic deposition process. As a result submicron to micron thick EMD films with good adhesion were deposited on various current collectors. The acidity of the electrolyte solutions was varied depending on the type of the surface coating or current collector used. The mechanism of the EMD film growth and morphology on different substrates was examined. Compatibility of the proposed current collector interface modification for the electrodeposition of conformal thick EMD films on high-aspect ratio microstructures was demonstrated. A method of EMD film conversion to LMO at low-temperature on different substrates was shown as the path toward their application in 3D Li-ion batteries
Maternal fish consumption, fatty acid levels and angiogenic factors: The Generation R Study
AbstractIntroductionAngiogenic factors, such as placental growth factor (PlGF) and soluble Flt-1 (sFlt-1), are key regulators of placental vascular development. Evidence from in vitro studies indicates that fatty acids can affect angiogenesis. We investigated the associations of maternal fish consumption and fatty acids levels with angiogenic factors during pregnancy, and in cord blood in a large population-based prospective cohort.MethodsFirst trimester fish consumption was assessed among 3134 pregnant women using a food-frequency questionnaire. Plasma fatty acid levels were measured in second trimester. Plasma PlGF and sFlt-1 were measured in first and second trimester and in cord blood. Associations of fish consumption or fatty acid levels with angiogenic factors were assessed by multivariable linear regression analyses.ResultsThere were no consistent associations of total fish or lean fish consumption with levels of PlGF, sFlt-1, or sFlt-1/PlGF ratio. Neither fatty fish nor shellfish were associated with angiogenic factors. Plasma omega-3 polyunsaturated fatty acids, which are the main type of fatty acids in fish, were inconsistently associated with angiogenic factors in second trimester and cord blood. Yet, higher levels of arachidonic acid, an omega-6 polyunsaturated fatty acid, were associated with lower levels of PlGF and sFlt-1.DiscussionWe found no consistent associations of fish consumption or fatty acids levels with angiogenic factors in a population with low fish consumption. Studies including populations with higher fish consumption are required to fully grasp the potential effects of maternal fish consumption on placental angiogenesis
Maternal fish consumption, fatty acid levels and angiogenic factors: The Generation R Study
Introduction Angiogenic factors, such as placental growth factor (PlGF) and soluble Flt-1 (sFlt-1), are key regulators of placental vascular development. Evidence from in vitro studies indicates that fatty acids can affect angiogenesis. We investigated the associations of maternal fish consumption and fatty acids levels with angiogenic factors during pregnancy, and in cord blood in a large population-based prospective cohort. Methods First trimester fish consumption was assessed among 3134 pregnant women using a food-frequency questionnaire. Plasma fatty acid levels were measured in second trimester. Plasma PlGF and sFlt-1 were measured in first and second trimester and in cord blood. Associations of fish consumption or fatty acid levels with angiogenic factors were assessed by multivariable linear regression analyses. Results There were no consistent associations of total fish or lean fish consumption with levels of PlGF, sFlt-1, or sFlt-1/PlGF ratio. Neither fatty fish nor shellfish were associated with angiogenic factors. Plasma omega-3 polyunsaturated fatty acids, which are the main type of fatty acids in fish, were inconsistently associated with angiogenic factors in second trimester and cord blood. Yet, higher levels of arachidonic acid, an omega-6 polyunsaturated fatty acid, were associated with lower levels of PlGF and sFlt-1. Discussion We found no consistent associations of fish consumption or fatty acids levels with angiogenic factors in a population with low fish consumption. Studies including populations with higher fish consumption are required to fully grasp the potential effects of maternal fish consumption on placental angiogenesis
A Time Projection Chamber with GEM-Based Readout
For the International Large Detector concept at the planned International
Linear Collider, the use of time projection chambers (TPC) with micro-pattern
gas detector readout as the main tracking detector is investigated. In this
paper, results from a prototype TPC, placed in a 1 T solenoidal field and read
out with three independent GEM-based readout modules, are reported. The TPC was
exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for
reconstructing hits, the measurement of the drift velocity, the space point
resolution and the control of field inhomogeneities are presented.Comment: 22 pages, 19 figure
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
A novel antifolate suppresses growth of FPGS-deficient cells and overcomes methotrexate resistance
Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency
A novel antifolate suppresses growth of FPGS-deficient cells and overcomes methotrexate resistance
Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency
- …