99 research outputs found

    Spin critical opalescence in zero temperature Bose-Einstein Condensates

    Full text link
    Cold atom developments suggest the prospect of measuring scaling properties and long-range fluctuations of continuous phase transitions at zero-temperature. We discuss the conditions for characterizing the phase separation of Bose-Einstein condensates of boson atoms in two distinct hyperfine spin states. The mean-field description breaks down as the system approaches the transition from the miscible side. An effective spin description clarifies the ferromagnetic nature of the transition. We show that a difference in the scattering lengths for the bosons in the same spin state leads to an effective internal magnetic field. The conditions at which the internal magnetic field vanishes (i.e., equal values of the like-boson scattering lengths) is a special point. We show that the long range density fluctuations are suppressed near that point while the effective spin exhibits the long-range fluctuations that characterize critical points. The zero-temperature system exhibits critical opalescence with respect to long wavelength waves of impurity atoms that interact with the bosons in a spin-dependent manner.Comment: 6 pages, 2 figure

    Driving superfluidity with photoassociation

    Get PDF
    We theoretically examine photoassociation of a two-component Fermi degenerate gas. Our focus is on adjusting the atom-atom interaction, and thereby increasing the critical temperature of the BCS transition to the superfluid state. In order to avoid spontaneous decay of the molecules, the photoassociating light must be far-off resonance. Very high light intensities are therefore required for effective control of the BCS transition.Comment: 7 (preprint) pages; submitted to Optics Expres

    Reentrant stability of BEC standing wave patterns

    Full text link
    We describe standing wave patterns induced by an attractive finite-ranged external potential inside a large Bose-Einstein Condensate (BEC). As the potential depth increases, the time independent Gross-Pitaevskii equation develops pairs of solutions that have nodes in their wavefunction. We elucidate the nature of these states and study their dynamical stability. Although we study the problem in a two-dimensional BEC subject to a cylindrically symmetric square-well potential of a radius that is comparable to the coherence length of the BEC, our analysis reveals general trends, valid in two and three dimensions, independent of the symmetry of the localized potential well, and suggestive of the behavior in general, short- and large-range potentials. One set of nodal BEC wavefunctions resembles the single particle n node bound state wavefunction of the potential well, the other wavefunctions resemble the n-1 node bound-state wavefunction with a kink state pinned by the potential. The second state, though corresponding to the lower free energy value of the pair of n node BEC states, is always unstable, whereas the first can be dynamically stable in intervals of the potential well depth, implying that the standing wave BEC can evolve from a dynamically unstable to stable, and back to unstable status as the potential well is adiabatically deepened, a phenomenon that we refer to as "reentrant dynamical stability".Comment: 13 pages, 9 figures; revised discussion in Sec.
    corecore