22 research outputs found

    Preclinical evaluation of (111)In-DTPA-INCA-X anti-Ku70/Ku80 monoclonal antibody in prostate cancer.

    Get PDF
    The aim of this investigation was to assess the Ku70/Ku80 complex as a potential target for antibody imaging of prostate cancer. We evaluated the in vivo and ex vivo tumor targeting and biodistribution of the (111)In-labeled human internalizing antibody, INCA-X ((111)In-DTPA-INCA-X antibody), in NMRI-nude mice bearing human PC-3, PC-3M-Lu2 or DU145 xenografts. DTPA-conjugated, non-labeled antibody was pre-administered at different time-points followed by a single intravenous injection of (111)In-DTPA-INCA-X. At 48, 72 and 96 h post-injection, tissues were harvested, and the antibody distribution was determined by measuring radioactivity. Preclinical SPECT/CT imaging of mice with and without the predose was performed at 48 hours post-injection of labeled DTPA-INCA-X. Biodistribution of the labeled antibody showed enriched activity in tumor, spleen and liver. Animals pre-administered with DTPA-INCA-X showed increased tumor uptake and blood content of (111)In-DTPA-INCA-X with reduced splenic and liver uptake. The in vitro and in vivo data presented show that the (111)In-labeled INCA-X antibody is internalized into prostate cancer cells and by pre-administering non-labeled DTPA-INCA-X, we were able to significantly reduce the off target binding and increase the (111)In-DTPA-INCA-X mAb uptake in PC-3, PC-3M-Lu2 and DU145 xenografts. The results are encouraging and identifying the Ku70/Ku80 antigen as a target is worth further investigation for functional imaging of prostate cancer

    Humanization, Radiolabeling and Biodistribution Studies of an IgG(1)-Type Antibody Targeting Uncomplexed PSA for Theranostic Applications

    Get PDF
    Metastatic castration-resistant prostate cancer is today incurable. Conventional imaging methods have limited detection, affecting their ability to give an accurate outcome prognosis, and current therapies for metastatic prostate cancer are insufficient. This inevitably leads to patients relapsing with castration-resistant prostate cancer. Targeting prostate-specific antigens whose expression is closely linked to the activity in the androgen receptor pathway, and thus the pathogenesis of prostate cancer, is a possible way to increase specificity and reduce off-target effects. We have humanized and evaluated radioimmunoconjugates of a previously murine antibody, m5A10, targeting PSA intended for theranostics of hormone-refractory prostate cancer. The humanized antibody h5A10 was expressed in mammalian HEK293 cells transfected with the nucleotide sequences for the heavy and light chains of the antibody. Cell culture medium was filtered and purified by Protein G chromatography, and the buffer was changed to PBS pH 7.4 by dialysis. Murine and humanized 5A10 were conjugated with p-SCN-Bn-CHX-A"-DTPA. Surface plasmon resonance was used to characterize the binding to PSA of the immunoconjugates. Immunoconjugates were labeled with either indium-111 or lutetium-177. Biodistribution studies of murine and humanized 5A10 were performed in mice with LNCaP xenografts. 5A10 was successfully humanized, and in vivo targeting showed specific binding in xenografts. The results thus give an excellent platform for further theranostic development of humanized 5A10 for clinical applications

    Preclinical efficacy of hK2 targeted [177Lu]hu11B6 for prostate cancer theranostics

    Get PDF
    Androgen ablating drugs increase life expectancy in men with metastatic prostate cancer, but resistance inevitably develops. In a majority of these recurrent tumors, the androgen axis is reactivated in the form of increased androgen receptor (AR) expression. Targeting proteins that are expressed as a down-stream effect of AR activity is a promising rationale for management of this disease. The humanized IgG1 antibody hu11B6 internalizes into prostate and prostate cancer (PCa) cells by binding to the catalytic cleft of human kallikrein 2 (hK2), a prostate specific enzyme governed by the AR-pathway. In a previous study, hu11B6 conjugated with Actinium-225 (225Ac), a high linear energy transfer (LET) radionuclide, was shown to generate an AR-upregulation driven feed-forward mechanism that is believed to enhance therapeutic efficacy. We assessed the efficacy of hu11B6 labeled with a low LET beta-emitter, Lutetium-177 (177Lu) and investigated whether similar tumor killing and AR-enhancement is produced. Moreover, single-photon emission computed tomography (SPECT) imaging of 177Lu is quantitatively accurate and can be used to perform treatment planning. [177Lu]hu11B6 therefore has significant potential as a theranostic agent. Materials and Methods: Subcutaneous PCa xenografts (LNCaP s.c.) were grown in male mice. Biokinetics at 4-336 h post injection and uptake as a function of the amount of hu11B6 injected at 72 h were studied. Over a 30 to 120-day treatment period the therapeutic efficacy of different activities of [177Lu]hu11B6 were assessed by volumetric tumor measurements, blood cell counts, molecular analysis of the tumor as well as SPECT/CT imaging. Organ specific mean absorbed doses were calculated, using a MIRD-scheme, based on biokinetic data and rodent specific S-factors from a modified MOBY phantom. Tumor tissues of treated xenografts were immunohistochemically (IHC) stained for Ki-67 (proliferation) and AR, SA-β-gal activity (senescence) and analyzed by digital autoradiography (DAR). Results: Organ-to-blood and tumor-to-blood ratios were independent of hu11B6 specific activity except for the highest amount of antibody (150 µg). Tumor accumulation of [177Lu]hu11B6 peaked at 168 h with a specific uptake of 29 ± 9.1 percent injected activity per gram (%IA/g) and low accumulation in normal organs except in the submandibular gland (15 ± 4.5 %IA/g), attributed to a cross-reaction with mice kallikreins in this organ, was seen. However, SPECT imaging with therapeutic amounts of [177Lu]hu11B6 revealed no peak in tumor accumulation at 7 d, probably due to cellular retention of 177Lu and decreasing tumor volumes. For [177Lu]hu11B6 treated mice, tumor decrements of up to 4/5 of the initial tumor volume and reversible myelotoxicity with a nadir at 12 d were observed after a single injection. Tumor volume reduction correlated with injected activity and the absorbed dose. IHC revealed retained expression of AR throughout treatment and that Ki-67 staining reached a nadir at 9-14 d which coincided with high SA- β-gal activity (14 d). Quantification of nuclei staining showed that Ki-67 expression correlated negatively with activity uptake. AR expression levels in cells surviving therapy compared to previous timepoints and to controls at 30 d were significantly increased (p = 0.017). Conclusions: This study shows that hu11B6 labeled with the low LET beta-emitting radionuclide 177Lu can deliver therapeutic absorbed doses to prostate cancer xenografts with transient hematological side-effects. The tumor response correlated with the absorbed dose both on a macro and a small scale dosimetric level. Analysis of AR staining showed that AR protein levels increased late in the study suggesting a therapeutic mechanism, a feed forward mechanism coupled to AR driven response to DNA damage or clonal lineage selection, similar to that reported in high LET alpha-particle therapy using 225Ac labeled hu11B6, however emerging at a later timepoint

    mRNA therapy corrects defective glutathione metabolism and restores ureagenesis in preclinical argininosuccinic aciduria

    Get PDF
    The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using ( S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria. </p

    A Conjugation Strategy to Modulate Antigen Binding and FcRn Interaction Leads to Improved Tumor Targeting and Radioimmunotherapy Efficacy with an Antibody Targeting Prostate-Specific Antigen

    No full text
    Background: The humanized monoclonal antibody (mAb) hu5A10 specifically targets and internalizes prostate cancer cells by binding to prostate specific antigen (PSA). Preclinical evaluations have shown that hu5A10 is an excellent vehicle for prostate cancer (PCa) radiotheranostics. We studied the impact of different chelates and conjugation ratios on hu5A10′s target affinity, neonatal fc-receptor interaction on in vivo targeting efficacy, and possible enhanced therapeutic efficacy. Methods: In our experiment, humanized 5A10 (hu5A10) was conjugated with DOTA or DTPA at a molar ratio of 3:1, 6:1, and 12:1. Surface plasmon resonance (SPR) was used to study antigen and FcRn binding to the antibody conjugates. [111In]hu5A10 radio-immunoconjugates were administered intravenously into BALB/c mice carrying subcutaneous LNCaP xenografts. Serial Single-photon emission computed tomography (SPECT) images were obtained during the first week. Tumors were harvested and radionuclide distribution was analyzed by autoradiography along with microanatomy and immunohistochemistry. Results: As seen by SPR, the binding to PSA was clearly affected by the chelate-to-antibody ratio. Similarly, FcRn (neonatal fc-receptor) interacted less with antibodies conjugated at high ratios of chelator, which was more pronounced for DOTA conjugates. The autoradiography data indicated a higher distribution of radioactivity to the rim of the tumor for lower ratios and a more homogenous distribution at higher ratios. Mice injected with ratio 3:1 111In-DOTA-hu5A10 showed no significant difference in tumor volume when compared to mice given vehicle over a time period of 3 weeks. Mice given a similar injection of ratio 6:1 111In-DOTA-hu5A10 or 6:1 111In-DTPA-hu5A10 or 12:1 111In-DTPA-hu5A10 showed significant tumor growth retardation. Conclusions: The present study demonstrated that the radiolabeling strategy could positively modify the hu5A10′s capacity to bind PSA and complex with the FcRn-receptor, which resulted in more homogenous activity distribution in tumors and enhanced therapy efficacy

    Radioimmunoimaging and Radioimmunotherapy of Prostate Cancer Preclinical evaluation of kallikrein related peptidase 2 targeting

    No full text
    Prostate cancer is one of the major causes of cancer related deaths in men in Europe and the United States. In this doctoral thesis, radioimmunoimaging and -therapy of prostate cancer was investigated pre-clinically by targeting the human kallikrein-related peptidase 2 (hK2) with radiolabelled monoclonal antibodies. hK2 is an antigen that is over-expressed in prostatic neoplasms and is closely related to prostate-specific antigen. The anti-hK2 monoclonal antibody 11B6 was radiolabelled with 111In or 177Lu for targeting of hK2-expressing LNCaP xenografts in nude or SCID mice. Biodistribution, pre-clinical SPECT/CT imaging, Cerenkov Luminescence Imaging (CLI), dosimetry calculations and therapy studies were performed to evaluate the targeting properties and therapeutic efficacy of the three tested radioimmunoconjugates (111In-m11B6, 177Lu-m11B6 and 177Lu-h11B6). SPECT/CT imaging showed that 111In-m11B6 targeted specifically hK2 and could clearly visualize the subcutaneous and intra-tibial LNCaP xenografts (paper I). Therapy studies of LNCaP xenograft models with 177Lu-labelled radioimmunoconjugates showed distinctive effects on the tumor volume and survival compared to the control groups. 177Lu-m11B6 gave a median survival close to 100% at 120 days when 36 MBq of activity was administrated (paper II). The humanized 177Lu-h11B6 showed a median survival of 77 days when 16 MBq was administrated compared to that of 37 days for the control groups and a reversible myeloid toxicity could be seen (paper IV). The use of CLI for assessment of individual biokinetics was tested. The correlation between CLI and SPECT was good as well as the correlation between CLI and ex vivo specific uptake measurements. The presented normalization schemes can serve as a first approach to relating the CLI radiance to the specific uptake (%IA/g) in subcutaneous xenografts (paper III). In summary, these studies proved the possibility of hK2 targeting using different radioimmunoconjugates, two murine predecessors and one humanized. A single administration of 177Lu labeled immunoconjugate was enough to significantly prolong the life of the treated mice compared to controls. Human kallikrein-related peptidase 2 targeting was thus shown to be feasible in both radioimmunoimaging and -therapy applications based on 11B6 radioimmunoconjugates. Further, CLI was successfully explored as a rapid and inexpensive tool to evaluate uptake in subcutaneous xenografts and showed high potential for use for absorbed dose estimates

    Small-scale dosimetry for alpha particle 241Am source cell irradiation and estimation of γ-H2AX foci distribution in prostate cancer cell line PC3

    No full text
    Background: The development of new targeted alpha therapies motivates improving alpha particle dosimetry. For alpha particles, microscopic targets must be considered to estimate dosimetric quantities that can predict the biological response. As double-strand breaks (DSB) on DNA are the main cause of cell death by ionizing radiation, cell nuclei are relevant volumes necessary to consider as targets. Since a large variance is expected of alpha particle hits in individual cell nuclei irradiated by an uncollimated alpha-emitting source, the damage induced should have a similar distribution. The induction of DSB can be measured by immunofluorescent γ-H2AX staining. The cell γ-H2AX foci distribution and alpha particle hits distribution should be comparable and thereby verify the necessity to consider the relevant dosimetric volumes. Methods: A Monte Carlo simulation model of an 241Am source alpha particle irradiation setup was combined with two versions of realistic cell nuclei phantoms. These were generated from DAPI-stained PC3 cells imaged with fluorescent microscopy, one consisting of elliptical cylinders and the other of segmented mesh volumes. PC3 cells were irradiated with the 241Am source for 4, 8 and 12 min, and after 30 min fixated and stained with immunofluorescent γ-H2AX marker. The detected radiation-induced foci (RIF) were compared to simulated RIF. Results: The mesh volume phantom detected a higher mean of alpha particle hits and energy imparted (MeV) per cell nuclei than the elliptical cylinder phantom, but the mean specific energy (Gy) was very similar. The mesh volume phantom detected a slightly larger variance between individual cells, stemming from the more extreme and less continuous distribution of cell nuclei sizes represented in this phantom. The simulated RIF distribution from both phantoms was in good agreement with the detected RIF, although the detected distribution had a zero-inflated shape not seen in the simulated distributions. An estimate of undetected foci was used to correct the detected RIF distribution and improved the agreement with the simulations. Conclusion: Two methods to generate cell nuclei phantoms for Monte Carlo dosimetry simulations were tested and generated similar results. The simulated and detected RIF distributions from alpha particle-irradiated PC3 cells were in good agreement, proposing the necessity to consider microscopic targets in alpha particle dosimetry

    Intratherapeutic Biokinetic Measurements, Dosimetry Parameters Estimate, and Monitoring Treatment Efficacy using Cerenkov Luminescence Imaging in Preclinical Radionuclide Therapy.

    No full text
    In recent years, there has been an increasing amount of interest in non-invasive Cerenkov Luminescence Imaging (CLI) of in vivo radionuclide distribution in small animals, a method proven as a high-throughput modality for confirmation of tracer uptake. 11B6 is an IgG1 monoclonal antibody that is specific for free human kallikrein-related peptidase 2 (hK2) an antigen abundant in malignant prostatic tissue. Free hK2 was targeted in prostate cancer xenografts using (177)Lu-labeled 11B6 in either murine or humanized forms for radionuclide therapy (RNT). In this setting, CLI was investigated as a tool for providing parameters of dosimetric importance during RNT. First, longitudinal imaging of biokinetics using CLI and single-photon emission computed tomography (SPECT) was compared. Second, the CLI signal was correlated to quantitative ex vivo tumor activity measurements. Finally, CLI was used to monitor the radionuclide treatment and it was found that the integrated CLI radiance correlated well with subject-specific tumor volume reduction

    Diffuse reflectance spectroscopy of liver tissue

    No full text
    Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases

    Radioimmunotherapy for Prostate Cancer-Current Status and Future Possibilities.

    No full text
    Prostate cancer (PCa) is one of the most common cancers in men and is the second leading cause of cancer-related deaths in the USA. In the United States, it is the second most frequently diagnosed cancer after skin cancer, and in Europe it is number one. According to the American Cancer Society, approximately 221,000 men in the United States would be diagnosed with PCa during 2015, and approximately 28,000 would die of the disease. According to the International Agency for Research on Cancer, approximately 345,000 men were diagnosed with PCa in Europe during 2012, and despite more emphasis placed on early detection through routine screening, 72,000 men died of the disease. Hence, the need for improved therapy modalities is of utmost importance. And targeted therapies based on radiolabeled specific antibodies or peptides are a very interesting and promising alternative to increase the therapeutic efficacy and overall chance of survival of these patients. There are currently several preclinical and some clinical studies that have been conducted, or are ongoing, to investigate the therapeutic efficacy and toxicity of radioimmunotherapy (RIT) against PCa. One thing that is lacking in a lot of these published studies is the dosimetry data, which are needed to compare results between the studies and the study locations. Given the complicated tumor microenvironment and overall complexity of RIT to PCa, old and new targets and targeting strategies like combination RIT and pretargeting RIT are being improved and assessed along with various therapeutic radionuclides candidates. Given alone or in combination with other therapies, these new and improved strategies and RIT tools further enhance the clinical response to RIT drugs in PCa, making RIT for PCa an increasingly practical clinical tool
    corecore