1,307 research outputs found

    Characterization of the Crab Pulsar's Timing Noise

    Full text link
    We present a power spectral analysis of the Crab pulsar's timing noise, mainly using radio measurements from Jodrell Bank taken over the period 1982-1989. The power spectral analysis is complicated by nonuniform data sampling and the presence of a steep red power spectrum that can distort power spectra measurement by causing severe power ``leakage''. We develop a simple windowing method for computing red noise power spectra of uniformly sampled data sets and test it on Monte Carlo generated sample realizations of red power-law noise. We generalize time-domain methods of generating power-law red noise with even integer spectral indices to the case of noninteger spectral indices. The Jodrell Bank pulse phase residuals are dense and smooth enough that an interpolation onto a uniform time series is possible. A windowed power spectrum is computed revealing a periodic or nearly periodic component with a period of about 568 days and a 1/f^3 power-law noise component with a noise strength of 1.24 +/- 0.067 10^{-16} cycles^2/sec^2 over the analysis frequency range 0.003 - 0.1 cycles/day. This result deviates from past analyses which characterized the pulse phase timing residuals as either 1/f^4 power-law noise or a quasiperiodic process. The analysis was checked using the Deeter polynomial method of power spectrum estimation that was developed for the case of nonuniform sampling, but has lower spectral resolution. The timing noise is consistent with a torque noise spectrum rising with analysis frequency as f implying blue torque noise, a result not predicted by current models of pulsar timing noise. If the periodic or nearly periodic component is due to a binary companion, we find a companion mass > 3.2 Earth masses.Comment: 53 pages, 9 figures, submitted to MNRAS, abstract condense

    Correlation studies of open and closed states fluctuations in an ion channel: Analysis of ion current through a large conductance locust potassium channel

    Full text link
    Ion current fluctuations occurring within open and closed states of large conductance locust potassium channel (BK channel) were investigated for the existence of correlation. Both time series, extracted from the ion current signal, were studied by the autocorrelation function (AFA) and the detrended fluctuation analysis (DFA) methods. The persistent character of the short- and middle-range correlations of time series is shown by the slow decay of the autocorrelation function. The DFA exponent α\alpha is significantly larger than 0.5. The existence of strongly-persistent long-range correlations was detected only for closed-states fluctuations, with α=0.98±0.02\alpha=0.98\pm0.02. The long-range correlation of the BK channel action is therefore determined by the character of closed states. The main outcome of this study is that the memory effect is present not only between successive conducting states of the channel but also independently within the open and closed states themselves. As the ion current fluctuations give information about the dynamics of the channel protein, our results point to the correlated character of the protein movement regardless whether the channel is in its open or closed state.Comment: 12 pages, 5 figures; to be published in Phys. Rev.

    Parameter estimation in spatially extended systems: The Karhunen-Loeve and Galerkin multiple shooting approach

    Get PDF
    Parameter estimation for spatiotemporal dynamics for coupled map lattices and continuous time domain systems is shown using a combination of multiple shooting, Karhunen-Loeve decomposition and Galerkin's projection methodologies. The resulting advantages in estimating parameters have been studied and discussed for chaotic and turbulent dynamics using small amounts of data from subsystems, availability of only scalar and noisy time series data, effects of space-time parameter variations, and in the presence of multiple time-scales.Comment: 11 pages, 5 figures, 4 Tables Corresponding Author - V. Ravi Kumar, e-mail address: [email protected]

    Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy

    Get PDF
    Invasive electroencephalograph (EEG) recordings of ten patients suffering from focal epilepsy were analyzed using the method of renormalized entropy. Introduced as a complexity measure for the different regimes of a dynamical system, the feature was tested here for its spatio-temporal behavior in epileptic seizures. In all patients a decrease of renormalized entropy within the ictal phase of seizure was found. Furthermore, the strength of this decrease is monotonically related to the distance of the recording location to the focus. The results suggest that the method of renormalized entropy is a useful procedure for clinical applications like seizure detection and localization of epileptic foci.Comment: 10 pages, 5 figure

    Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range

    Get PDF
    Quantitative analysis of time-resolved data in primary erythroid progenitor cells reveals that a dual negative transcriptional feedback mechanism underlies the ability of STAT5 to respond to the broad spectrum of physiologically relevant Epo concentrations

    Electronic Structure and Lattice Relaxation Related to Fe in Mgo

    Full text link
    The electronic structure of Fe impurity in MgO was calculated by the linear muffin-tin orbital--full-potential method within the conventional local-density approximation (LDA) and making use of the LDA+UU formalism. The importance of introducing different potentials, depending on the screened Coulomb integral UU, is emphasized for obtaining a physically reasonable ground state of the Fe2+^{2+} ion configuration. The symmetry lowering of the ion electrostatic field leads to the observed Jahn--Teller effect; related ligand relaxation confined to tetragonal symmetry has been optimized based on the full-potential total energy results. The electronic structure of the Fe3+^{3+} ion is also calculated and compared with that of Fe2+^{2+}.Comment: 13 pages + 4 PostScript figures, Revtex 3.0, SISSA-CM-94-00

    Correlated X-ray/Ultraviolet/Optical variability in the very low mass AGN NGC 4395

    Get PDF
    We report the results of a one year Swift X-ray/UV/optical programme monitoring the dwarf Seyfert nucleus in NGC 4395 in 2008-2009. The UV/optical flux from the nucleus was found to vary dramatically over the monitoring period, with a similar pattern of variation in each of the observed UV/optical bands (spanning 1900 - 5500 {\AA}). In particular, the luminosity of NGC 4395 in the 1900 {\AA} band changed by more than a factor of eight over the monitoring period. The fractional variability was smaller in the UV/optical bands than that seen in the X-rays, with the X-ray/optical ratio increasing with increasing flux. Pseudo-instantaneous flux measurements in the X-ray and each UV/optical band were well correlated, with cross correlation coefficients of >0.7, significant at 99.9 per cent confidence. Archival Swift observations from 2006 sample the intra-day X-ray/optical variability on NGC 4395. These archival data show a very strong correlation between the X-ray and b bands, with a cross-correlation coefficient of 0.84 (significant at >99 per cent confidence). The peak in the cross correlation function is marginally resolved and asymmetric, suggesting that X-rays lead the b band, but by 1 hour. In response to recent (August 2011) very high X-ray flux levels from NGC4395 we triggered Swift ToO observations, which sample the intra-hour X-ray/UV variability. These observations indicate, albeit with large uncertainties, a lag of the 1900 {\AA} band behind the X-ray flux of ~400 s. The tight correlation between the X-ray and UV/optical lightcurves, together with the constraints we place on lag time-scale are consistent with the UV/optical variability of NGC 4395 being primarily due to reprocessing of X-ray photons by the accretion disc.Comment: 11 pages, 9 figures, 3 tables. Accepted for publication in MNRA

    OT FE-Box Test Procedures

    Get PDF
    The OT FE readout requirements is the precise (~0.5 ns) and efficient drift time measurement at an occupancy of ~4% to ensure single hit resolution. The acquired achievement of such performance on an assembled FE-Box is verify through a final test performed using a special FE-Tester. In this note the test procedures are described
    corecore