7 research outputs found

    Syntactic core composite sandwich (SCCS) with thermoplastic foam and expanded glass granulate core

    Get PDF
    Ultra light, highly porous materials arranged as a sandwich structure with thermoplastic fiber reinforced composites (TP-FRC) as a cover layer have very good physical and mechanical properties. An essential prerequisite for the production of hybrid material composites is therefore the provision of material compatible and cost effective manufacturing processes. The lightweight potential of such a syntactic core composite sandwich (SCCS) with thermoplastic and expanded glass granules was examined with the aim of a mass production. After developing a manufacturing strategy, various samples are prepared and their mechanical properties are evaluated by performing bending tests and examination of micrographs

    Structure integrated shape memory polymer composites for multidimensional forming

    Get PDF
    Large-scale curved structures such as wind turbine wings usually require a special and cost intensive transport to the installation destination. These transport and installation costs can be reduced by a flat transport condition and the possibility of layering several structural components. For this reason, the focus at the Department of Lightweight Structures and Polymer Technology at TU Chemnitz was on a novel active material composite, which enables resource-efficient mass production and has a new component architecture. The large-volume multidimensional curvature of the active structure could be achieved by using a shape memory polymer (SMP). The associated reduction of the specific investment costs, the use of materials and the possibility of an integrative design, can contribute to the fact that, for example, the small wind turbines will become an economically viable investment in the future. The active structure influencing was represented by means of a finite element simulation (FEM) for different material composites and could be verified by generic demonstrators regarding its validity

    Composite sandwich with aluminum foam core and adhesive bonded Carbon Fiber Reinforced Thermoplastic cover layer

    No full text
    The combination of metals and fiber reinforced plastics is also known as hybrid metal composites. They offer the fusion of the good static mechanical properties of the fiber reinforced plastics and the good dynamic mechanical properties of the metal. For that reason, parts made of hybrid metal composites are predestined for the use as load relevant parts. The purpose of this study was to develop new technologies for semi finished hybrid metal composite materials. Thermoplastic Fiber-Reinforced Composites (TP-FRC) were arranged with new, isotropic, closed pore Aluminum Foam (AF) structures to an Extrinsically Combined Composite Sandwich (ECCS) by adhesive bonding. They form the basis for novel weight-optimized as well as cost-effective applications. The entire manufacturing process for the continuous semi-finished product was examined and verified according DIN EN 2563. This was done with regard to subsequent characterization by the specific bending modulus and specific bending stiffness. The examinations show a high bending stiffness and high strength structures combined with excellent damping properties at high damage tolerances. These are the most requested in automotive applications

    Structure integrated shape memory polymer composites for multidimensional forming

    No full text
    Large-scale curved structures such as wind turbine wings usually require a special and cost intensive transport to the installation destination. These transport and installation costs can be reduced by a flat transport condition and the possibility of layering several structural components. For this reason, the focus at the Department of Lightweight Structures and Polymer Technology at TU Chemnitz was on a novel active material composite, which enables resource-efficient mass production and has a new component architecture. The large-volume multidimensional curvature of the active structure could be achieved by using a shape memory polymer (SMP). The associated reduction of the specific investment costs, the use of materials and the possibility of an integrative design, can contribute to the fact that, for example, the small wind turbines will become an economically viable investment in the future. The active structure influencing was represented by means of a finite element simulation (FEM) for different material composites and could be verified by generic demonstrators regarding its validity

    The Influence of Material Configuration of Fibre-Metal Laminates with Alumina Core on Flexural Strength

    No full text
    Fibre metal laminates (FMLs) consisting of layers made of PA6 polyamide prepregs reinforced with glass and carbon fibres and an aluminium alloy core are the new variant of the other types used by aerospace FML materials such as GLARE or CARALL. By using a thermoplastic matrix, they can be shaped by stamping processes, which allows for a more efficient production process than classical laminating methods such as vacuum bagging. In addition to the improved impact energy absorption efficiency, the metallic core can be utilised to effectively bond the composite part to adjacent metallic structures. This article presents the influence of the material configuration of fibre-metal laminates consisting of continuous fibre-reinforced thermoplastic outer layers integrated with a layer of metallic aluminium alloy inserts - a number of layers, type and direction of reinforcing fibres - on the static and fatigue flexural properties. In this study, eight laminate configurations were prepared using a one-step variothermal consolidation process. The results showed that in the three-point flexural fatigue test, the samples exceeded 106 cycles at stresses <30% of the static bending strength. Laminates with predominantly longitudinally reinforced layers showed the highest fatigue strength among the FML samples analysed. The type of reinforcing fibres and the number of layers were less affected on the analysed mechanical properties

    Enhancing Efficiency of Industrial Centrifugal Fans Using Blade Adjustment Mechanism

    No full text
    The paper presents research on increasing the efficiency of industrial centrifugal fans, which are the third highest energy-consuming group of devices. This problem is related to the frequent incompatibility of the fan characteristics with the flow conditions of the installation in which they are operated, which lowers efficiency and increases energy consumption. By ensuring high efficiency of these devices, it is possible to significantly reduce the operating costs of such industrial equipment. For this purpose, a unique concept of regulating the flow parameters of centrifugal fans was developed. The scientific basis of this idea is that a relatively small change in the impeller diameter of the fan significantly affects the flow rate and the pressure rise of the fan. Therefore, the idea uses variable length of the impeller blades by dividing them into a fixed and a movable part. It enables adjustment of the length of the blades, which allows extension of the range of effective and efficient operating parameters. On this basis, several technical solutions of the regulation system were developed, which were then tested using simulation and analytical methods. Two material options for the moving part of the blade have also been developed, one made of metallic materials (high-strength steel and aluminum) and the other made of composite materials. The research showed a significant influence of the mass of the movable part of the blade on the load of the control system. Therefore, ultra-light material variants were used for the impeller blades. The flow simulation tests of the new method of adjusting the fan flow parameters confirmed the effectiveness of this solution. As a result, a wider range of highly efficient centrifugal fans equipped with such a control system was obtained

    Enhancing Efficiency of Industrial Centrifugal Fans Using Blade Adjustment Mechanism

    No full text
    The paper presents research on increasing the efficiency of industrial centrifugal fans, which are the third highest energy-consuming group of devices. This problem is related to the frequent incompatibility of the fan characteristics with the flow conditions of the installation in which they are operated, which lowers efficiency and increases energy consumption. By ensuring high efficiency of these devices, it is possible to significantly reduce the operating costs of such industrial equipment. For this purpose, a unique concept of regulating the flow parameters of centrifugal fans was developed. The scientific basis of this idea is that a relatively small change in the impeller diameter of the fan significantly affects the flow rate and the pressure rise of the fan. Therefore, the idea uses variable length of the impeller blades by dividing them into a fixed and a movable part. It enables adjustment of the length of the blades, which allows extension of the range of effective and efficient operating parameters. On this basis, several technical solutions of the regulation system were developed, which were then tested using simulation and analytical methods. Two material options for the moving part of the blade have also been developed, one made of metallic materials (high-strength steel and aluminum) and the other made of composite materials. The research showed a significant influence of the mass of the movable part of the blade on the load of the control system. Therefore, ultra-light material variants were used for the impeller blades. The flow simulation tests of the new method of adjusting the fan flow parameters confirmed the effectiveness of this solution. As a result, a wider range of highly efficient centrifugal fans equipped with such a control system was obtained
    corecore