2 research outputs found

    Differential Diagnosis and Molecular Stratification of Gastrointestinal Stromal Tumors on CT Images Using a Radiomics Approach

    No full text
    Treatment planning of gastrointestinal stromal tumors (GISTs) includes distinguishing GISTs from other intra-abdominal tumors and GISTs’ molecular analysis. The aim of this study was to evaluate radiomics for distinguishing GISTs from other intra-abdominal tumors, and in GISTs, predict the c-KIT, PDGFRA, BRAF mutational status, and mitotic index (MI). Patients diagnosed at the Erasmus MC between 2004 and 2017, with GIST or non-GIST intra-abdominal tumors and a contrast-enhanced venous-phase CT, were retrospectively included. Tumors were segmented, from which 564 image features were extracted. Prediction models were constructed using a combination of machine learning approaches. The evaluation was performed in a 100 × random-split cross-validation. Model performance was compared to that of three radiologists. One hundred twenty-five GISTs and 122 non-GISTs were included. The GIST vs. non-GIST radiomics model had a mean area under the curve (AUC) of 0.77. Three radiologists had an AUC of 0.69, 0.76, and 0.84, respectively. The radiomics model had an AUC of 0.52 for c-KIT, 0.56 for c-KIT exon 11, and 0.52 for the MI. The numbers of PDGFRA, BRAF, and other c-KIT mutations were too low for analysis. Our radiomics model was able to distinguish GISTs from non-GISTs with a performance similar to three radiologists, but less observer dependent. Therefore, it may aid in the early diagnosis of GIST, facilitating rapid referral to specialized treatment centers. As the model was not able to predict any genetic or molecular features, it cannot aid in treatment planning yet.ImPhys/Medical ImagingImPhys/Computational Imagin

    Differential diagnosis and mutation stratification of desmoid-type fibromatosis on MRI using radiomics

    No full text
    Purpose: Diagnosing desmoid-type fibromatosis (DTF) requires an invasive tissue biopsy with β-catenin staining and CTNNB1 mutational analysis, and is challenging due to its rarity. The aim of this study was to evaluate radiomics for distinguishing DTF from soft tissue sarcomas (STS), and in DTF, for predicting the CTNNB1 mutation types. Methods: Patients with histologically confirmed extremity STS (non-DTF) or DTF and at least a pretreatment T1-weighted (T1w) MRI scan were retrospectively included. Tumors were semi-automatically annotated on the T1w scans, from which 411 features were extracted. Prediction models were created using a combination of various machine learning approaches. Evaluation was performed through a 100x random-split cross-validation. The model for DTF vs. non-DTF was compared to classification by two radiologists on a location matched subset. Results: The data included 203 patients (72 DTF, 131 STS). The T1w radiomics model showed a mean AUC of 0.79 on the full dataset. Addition of T2w or T1w post-contrast scans did not improve the performance. On the location matched cohort, the T1w model had a mean AUC of 0.88 while the radiologists had an AUC of 0.80 and 0.88, respectively. For the prediction of the CTNNB1 mutation types (S45 F, T41A and wild-type), the T1w model showed an AUC of 0.61, 0.56, and 0.74. Conclusions: Our radiomics model was able to distinguish DTF from STS with high accuracy similar to two radiologists, but was not able to predict the CTNNB1 mutation status.ImPhys/Medical ImagingImPhys/Computational ImagingElectrical Engineering, Mathematics and Computer Scienc
    corecore