1,425 research outputs found

    Social Media as Boundary Objects in Crisis Response: A Collective Action Perspective

    Get PDF
    Master'sMASTER OF SCIENC

    Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2

    Get PDF
    The mitotic checkpoint prevents cells with unaligned chromosomes from prematurely exiting mitosis by inhibiting the anaphase-promoting complex/cyclosome (APC/C) from targeting key proteins for ubiquitin-mediated proteolysis. We have examined the mechanism by which the checkpoint inhibits the APC/C by purifying an APC/C inhibitory factor from HeLa cells. We call this factor the mitotic checkpoint complex (MCC) as it consists of hBUBR1, hBUB3, CDC20, and MAD2 checkpoint proteins in near equal stoichiometry. MCC inhibitory activity is 3,000-fold greater than that of recombinant MAD2, which has also been shown to inhibit APC/C in vitro. Surprisingly, MCC is not generated from kinetochores, as it is also present and active in interphase cells. However, only APC/C isolated from mitotic cells was sensitive to inhibition by MCC. We found that the majority of the APC/C in mitotic lysates is associated with the MCC, and this likely contributes to the lag in ubiquitin ligase activity. Importantly, chromosomes can suppress the reactivation of APC/C. Chromosomes did not affect the inhibitory activity of MCC or the stimulatory activity of CDC20. We propose that the preformed interphase pool of MCC allows for rapid inhibition of APC/C when cells enter mitosis. Unattached kinetochores then target the APC/C for sustained inhibition by the MCC

    Where does stress happen? Ecological momentary assessment of daily stressors using a mobile phone app.

    Get PDF
    Despite the importance of daily stress to individuals' health and wellbeing, few studies have explored where stress happens in real time. As such, stress interventions rarely account for the environment in which stress occurs. We used ecological momentary assessment (EMA) to collect daily stress data. Thirty-three participants utilized a mobile phone-based EMA app to record stressors as they went about their daily lives. GPS coordinates were automatically collected with each stress report. Data from thematic and geographic information system (GIS) analysis were used in a chi-square analysis of stressors by location (home, work, work from home, and other) to determine if certain stressors were more prevalent in certain environments. The study found that nine daily stressors significantly differed by location. Work-related stress was reported more often at work but was also commonly experienced at home. In contrast, pets, household chores, sleep and media related stressors were reported most at home, but not experienced as often in other locations. Physical illnesses, vehicles or driving, and law and order stressors occurred most often in the 'work from home' condition. Traffic-related stress was experienced more common in 'other' environments. Study findings: 1) expand the understanding of environments in which specific stressors occur; 2) extend the nomological network of cognitive appraisal theory to include stress experienced in free-living conditions; 3) provide baseline data for potential targeted 'just-in-time' stress interventions, tailored to specific stressors in certain environments; 4) provide findings related to the 'work from home' phenomenon, increasingly popular during and after the COVID-19 pandemic

    Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells

    Get PDF
    We report the interactions amongst 20 proteins that specify their assembly to the centromere–kinetochore complex in human cells. Centromere protein (CENP)-A is at the top of a hierarchy that directs three major pathways, which are specified by CENP-C, -I, and Aurora B. Each pathway consists of branches that intersect to form nodes that may coordinate the assembly process. Complementary EM studies found that the formation of kinetochore trilaminar plates depends on the CENP-I/NUF2 branch, whereas CENP-C and Aurora B affect the size, shape, and structural integrity of the plates. We found that hMis12 is not constitutively localized at kinetochores, and that it is not essential for recruiting CENP-I. Our studies also revealed that kinetochores in HeLa cells contain an excess of CENP-A, of which ∼10% is sufficient to promote the assembly of normal levels of kinetochore proteins. We elaborate on a previous model that suggested kinetochores are assembled from repetitive modules (Zinkowski, R.P., J. Meyne, and B.R. Brinkley. 1991. J. Cell Biol. 113:1091–110)

    Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response

    Get PDF
    Anumber of proteins are recruited to nuclear foci upon exposure to double-strand DNA damage, including 53BP1 and Rad51, but the precise role of these DNA damage–induced foci remain unclear. Here we show in a variety of human cell lines that histone deacetylase (HDAC) 4 is recruited to foci with kinetics similar to, and colocalizes with, 53BP1 after exposure to agents causing double-stranded DNA breaks. HDAC4 foci gradually disappeared in repair-proficient cells but persisted in repair-deficient cell lines or cells irradiated with a lethal dose, suggesting that resolution of HDAC4 foci is linked to repair. Silencing of HDAC4 via RNA interference surprisingly also decreased levels of 53BP1 protein, abrogated the DNA damage–induced G2 delay, and radiosensitized HeLa cells. Our combined results suggest that HDAC4 is a critical component of the DNA damage response pathway that acts through 53BP1 and perhaps contributes in maintaining the G2 cell cycle checkpoint

    Where does stress happen? Ecological momentary assessment of daily stressors using a mobile phone app. [Journal article]

    Get PDF
    Despite the importance of daily stress to individuals' health and wellbeing, few studies have explored where stress happens in real time, that is, dynamic stress processes in different spaces. As such, stress interventions rarely account for the environment in which stress occurs. We used mobile phone based ecological momentary assessment (EMA) to collect daily stress data. Thirty-three participants utilized a mobile-phone-based EMA app to self-report stressors as they went about their daily lives. Geographic coordinates were automatically collected with each stress report. Data from thematic analysis of stressors by location (home, work, work from home, other) were used to determine whether certain stressors were more prevalent in certain environments. Nine daily stressors significantly differed by location. Work-related stress was reported more often at work. Pets, household chores, sleep, and media-related stressors were reported most at home. Physical illnesses, vehicle issues, and safety/security stressors occurred most often while participants were "working from home." Traffic-related stress was experienced more commonly in "other" environments. Other 18 stressors were generated regardless of location, suggesting that these stressors were persistent and without respect to location. Study findings expand the understanding of environments in which specific stressors occur, providing baseline data for potential targeted "just-in-time" stress interventions tailored to unique stressors in specific environments. We also provide findings related to the "work from home" phenomenon. Further work is needed to better understand the unique stressors among the large number of individuals who transitioned to working from home during and after the COVID-19 pandemic

    A Human BRCA2 Complex Containing a Structural DNA Binding Component Influences Cell Cycle Progression

    Get PDF
    AbstractGermline mutations of the human BRCA2 gene confer susceptibility to breast cancer. Although the function of the BRCA2 protein remains to be determined, murine cells homozygous for BRCA2 inactivation display chromosomal aberrations. We have isolated a 2 MDa BRCA2-containing complex and identified a structural DNA binding component, designated as BR CA2-A ssociated F actor 35 (BRAF35). BRAF35 contains a nonspecific DNA binding HMG domain and a kinesin-like coiled coil domain. Similar to BRCA2, BRAF35 mRNA expression levels in mouse embryos are highest in proliferating tissues with high mitotic index. Strikingly, nuclear staining revealed a close association of BRAF35/BRCA2 complex with condensed chromatin coincident with histone H3 phosphorylation. Importantly, antibody microinjection experiments suggest a role for BRCA2/BRAF35 complex in modulation of cell cycle progression
    corecore