658 research outputs found
An Epidemiological Reappraisal of the Familial Aggregation of Prostate Cancer: A Meta-Analysis
Studies on familial aggregation of cancer may suggest an overall contribution of inherited genes or a shared environment in the development of malignant disease. We performed a meta-analysis on familial clustering of prostate cancer. Out of 74 studies reporting data on familial aggregation of prostate cancer in unselected populations retrieved by a Pubmed search and browsing references, 33 independent studies meeting the inclusion criteria were used in the analysis performed with the random effects model. The pooled rate ratio (RR) for first-degree family history, i.e. affected father or brother, is 2.48 (95% confidence interval: 2.25–2.74). The incidence rate for men who have a brother who got prostate cancer increases 3.14 times (CI:2.37–4.15), and for those with affected father 2.35 times (CI:2.02–2.72). The pooled estimate of RR for two or more affected first-degree family members relative to no history in father and in brother is 4.39 (CI:2.61–7.39). First-degree family history appears to increase the incidence rate of prostate cancer more in men under 65 (RR:2.87, CI:2.21–3.74), than in men aged 65 and older (RR:1.92, CI:1.49–2.47), p for interaction = 0.002. The attributable fraction among those having an affected first-degree relative equals to 59.7% (CI:55.6–63.5%) for men at all ages, 65.2% (CI:57.7–71.4%) for men younger than 65 and 47.9% (CI:37.1–56.8%) for men aged 65 or older. For those with a family history in 2 or more first-degree family members 77.2% (CI:65.4–85.0%) of prostate cancer incidence can be attributed to the familial clustering. Our combined estimates show strong familial clustering and a significant effect-modification by age meaning that familial aggregation was associated with earlier disease onset (before age 65)
Respiratory function and bronchial responsiveness among industrial workers exposed to different classes of occupational agents: a study from Algeria
Occupational exposures play a role in the onset of several chronic airway diseases. We investigated, in a cross-sectional study, lung function parameters and bronchial hyper-responsiveness to histamine in workers exposed to different airborne compounds
Placental mitochondrial DNA content is associated with childhood intelligence
Background: Developmental processes in the placenta and the fetal brain are shaped by the similar biological signals. Evidence accumulates that adaptive responses of the placenta may influence central nervous system development. We hypothesize that placental mtDNA content at birth is associated with intelligence in childhood. In addition, we investigate if intra-pair differences in mtDNA content are associated with intra-pair differences in intelligence.
Methods: Relative mtDNA content was measured using qPCR in placental tissue of 375 children of the East Flanders Prospective Twin Survey. Intelligence was assessed with the Wechsler Intelligence Scale for Children-Revised (WISC-R) between 8 and 15 years old. We accounted for sex, gestational age, birth weight, birth year, zygosity and chorionicity, cord insertion, age at measurement, indicators of socioeconomic status, smoking during pregnancy, and urban environment.
Results: In multivariable adjusted mixed modelling analysis, each doubling in placental mtDNA content was associated with 2.0 points (95% CI 0.02 to 3.9; p = 0.05) higher total and 2.3 points (95% CI 0.2 to 4.3; p = 0.03) higher performance IQ in childhood. We observed no association between mtDNA content and verbal intelligence. Intra-pair differences in mtDNA content and IQ were significantly (p = 0.01) correlated in monozygotic-monochorionic twin pairs, showing that the twin with the highest mtDNA content was 1.9 times more likely (p = 0.05) to have the highest IQ. This was not observed in dichorionic twin pairs.
Conclusions: We provide the first evidence that placental mtDNA content is associated with childhood intelligence. This emphasizes the importance of placental mitochondrial function during in utero life on fetal brain development with long-lasting consequences
A Co-expression Analysis of the Placental Transcriptome in Association With Maternal Pre-pregnancy BMI and Newborn Birth Weight
Maternal body mass index (BMI) before pregnancy is known to affect both fetal growth and later-life health of the newborn, yet the implicated molecular mechanisms remain largely unknown. As the master regulator of the fetal environment, the placenta is a valuable resource for the investigation of processes involved in the developmental programming of metabolic health. We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal BMI and fetal growth. We used RNA microarray (Agilent 8 × 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using a weighted gene co-expression network analysis, we identified 17 correlated gene modules. Three of these modules were associated with both maternal pre-pregnancy BMI and newborn birth weight. A gene cluster enriched for genes involved in immune response and myeloid cell differentiation was positively associated with maternal BMI and negatively with low birth weight. Two other gene modules, upregulated in association with maternal BMI as well as birth weight, were involved in processes related to organ and tissue development, with blood vessel morphogenesis and extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-, angiogenesis-, and extracellular matrix-related genes were among the identified hub genes. The association between maternal BMI and newborn weight was significantly mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124, COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity in adults, our observation in placental tissue suggests that biological processes may be affected from prenatal life onwards, thereby identifying new molecular processes linking maternal BMI and fetal metabolic programming
Telomere length in early childhood and its association with attention: a study in 4–6 year old children
Telomere length (TL), a marker of cellular aging, has been studied in adults with regard to its connection to cognitive function. However, little is known about the association between TL and cognitive development in children. This study investigated the interplay between TL and cognitive functioning in 283 Belgian children aged four to six years of the Environmental Influence on Aging in Early Life (ENVIRONAGE) birth cohort. Child leukocyte TL was measured using qPCR, while cognitive functioning, including attention and memory, was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Linear regression models were employed to examine the association between TL and cognitive outcomes, adjusting for potential confounders. We found an inverse association between TL and the spatial errors made during the Motor Screening task (p = 0.017), indicating a higher motor accuracy in children with longer telomeres. No significant associations were found between TL and other cognitive outcomes. Our results suggest a specific link between TL and motor accuracy but not with the other cognitive domains
Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva
Background: Ultrafine particles (< 100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children.
Methods: Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week.
Results: Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+ 28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI: 10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles.
Conclusions: Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva
Neurobehavioral function and low-level exposure to brominated flame retardants in adolescents : a cross-sectional study
Background: Animal and in vitro studies demonstrated a neurotoxic potential of brominated flame retardants, a group of chemicals used in many household and commercial products to prevent fire. Although the first reports of detrimental neurobehavioral effects in rodents appeared more than ten years ago, human data are sparse.
Methods: As a part of a biomonitoring program for environmental health surveillance in Flanders, Belgium, we assessed the neurobehavioral function with the Neurobehavioral Evaluation System (NES-3), and collected blood samples in a group of high school students. Cross-sectional data on 515 adolescents (13.6-17 years of age) was available for the analysis. Multiple regression models accounting for potential confounders were used to investigate the associations between biomarkers of internal exposure to brominated flame retardants [serum levels of polybrominated diphenyl ether (PBDE) congeners 47, 99, 100, 153, 209, hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA)] and cognitive performance. In addition, we investigated the association between brominated flame retardants and serum levels of FT3, FT4, and TSH.
Results: A two-fold increase of the sum of serum PBDE's was associated with a decrease of the number of taps with the preferred-hand in the Finger Tapping test by 5.31 (95% CI: 0.56 to 10.05, p = 0.029). The effects of the individual PBDE congeners on the motor speed were consistent. Serum levels above the level of quantification were associated with an average decrease of FT3 level by 0.18 pg/mL (95% CI: 0.03 to 0.34, p = 0.020) for PBDE-99 and by 0.15 pg/mL (95% CI: 0.004 to 0.29, p = 0.045) for PBDE-100, compared with concentrations below the level of quantification. PBDE-47 level above the level of quantification was associated with an average increase of TSH levels by 10.1% (95% CI: 0.8% to 20.2%, p = 0.033), compared with concentrations below the level of quantification. We did not observe effects of PBDE's on neurobehavioral domains other than the motor function. HBCD and TBBPA did not show consistent associations with performance in the neurobehavioral tests.
Conclusions: This study is one of few studies and so far the largest one investigating the neurobehavioral effects of brominated flame retardants in humans. Consistently with experimental animal data, PBDE exposure was associated with changes in the motor function and the serum levels of the thyroid hormones
- …