15 research outputs found

    Molekulares Targeting des BCR/ABL-Translokationsprodukts als Therapieansatz für Philadelphia-Chromosom-positive Leukämien

    Get PDF
    Das Philadelphia-Chromosom (Ph) ist das zytogenetische Korrelat der t(9;22). 95% der chronisch myeloischen Leukämien (CML) und 20-25% der akuten lymphatischen Leukämien (ALL) des Erwachsenen sind Ph-positiv (Ph+). Die t(9;22) führt zur Expression des chimären BCR/ABL Fusionsproteins, das für die Pathogenese der Ph+ Leukämien verantwortlich ist. Das ABL-Protein ist eine nicht-Rezeptor Tyrosinkinase. Im BCR/ABL-Fusionsprotein wird die Kinase-Aktivität von ABL, die im Normalfall streng reguliert ist, durch die Fusion mit BCR konstitutiv aktiviert. Die N-terminale BCR-"coiled-coil" Domäne vermittelt die Oligomerisierung des Fusionsproteins und dadurch zur Aktivierung der ABL-Kinase. Dies führt zur malignen Transformation hämopoetischer Zellen. Der ABL-Kinaseinhibitor STI571 ist ein tumorzellspezifisches Therapeutikum für Ph+ Leukämien, das bei der Mehrzahl der Patienten zur hämatologischen Vollremission führt. Insbesondere bei Patienten mit CML-Blastenkrise und Ph+ ALL kommt es durch klonale Selektion STI571-resistenter Zellen zu einem frühen Therapie-refraktären Rezidiv der Krankheit. Ziel dieser Arbeit war es, die Grundlagen für neue, tumorzellspezifische Therapiestrategien für die Behandlung BCR/ABL-positiver Leukämien zu legen. Im ersten Teil der Arbeit sollte geklärt werden, ob sich die "coiled-coil" Domäne als Zielstruktur für einen molekularen Therapieansatz eignet: es wurde untersucht, ob eine Hemmung der Oligomerisierung das Transformationspotential von BCR/ABL negativ beeinflußt. Der Zusammenhang zwischen Oligomerisierung und Transformationspotential von BCR/ABL wurde mit Hilfe verschiedener Fusionskonstrukte untersucht, bei denen die Oligomerisierungsdomänen verschiedener Proteinen, (BCR, PML, PLZF und TEL) mit dem ABL-Teil von BCR/ABL fusioniert wurden (X-ABL). Es konnte gezeigt werden, daß ein direkter Zusammenhang zwischen der Oligomerisierung, Transformationspotential und STI571-Sensitivität besteht: verstärkte Oligomerisierung der X-ABL Konstrukte führte zu einem ein höheren Transformationspotential und einer geringeren STI571-Sensitivität und umgekehrt. Außerdem wurde gezeigt, daß die Inhibierung der Oligomerisierung mit Hilfe eines rekombinanten Peptids das Transformationspotential von BCR/ABL erniedrigt und gleichzeitig die Sensibilität gegenüber STI571 stark erhöht. Diese Ergebnisse zeigen, daß die Oligomerisierungsdomäne von BCR/ABL einen therapeutischer Angriffspunkt für die Behandlung Ph+ Leukämien darstellt. Im zweiten Teil der Arbeit wurde der Tumorzell-spezifische Mechanismus der As2O3-induzierten Apoptose bei Ph+ Zellen untersucht. Kürzlich wurde gezeigt, daß aktiviertes RAS die Expression von endogenem PML hochreguliert. RAS wird durch BCR/ABL konstitutiv aktiviert. Bei der Akuten Promyelozytenleukämie (APL) ist PML im Rahmen der t(15;17) durch die Fusion mit RARa modifiziert. Die Behandlung von Zellen mit As2O3 führt zur Modifikation von PML durch den "small ubiquitin like modifier" (SUMO-1). Im Rahmen dieser Arbeit konnte gezeigt werden, daß sich die Gemeinsamkeiten zwischen Ph+ CML und ALL-Blasten und den t(15;17) positiven APL-Blasten in Hinsicht auf die Sensibilität für die As2O3-induzierte Apoptose auf die direkte oder indirekte Modifikation von PML durch die jeweiligen Translokationsprodukte zurückführen lassen. In dieser Arbeit wurde mittels Überexpression von PML und konstitutiv aktiviertem RAS (RASV12) gezeigt, daß BCR/ABL durch Aktivierung des RASSignalweges die PML-Expression modifiziert und die As2O3-induzierte Apoptose Ph+ Zellen somit durch PML vermittelt wird. An einem Mausmodell der Ph- Leukämie wurde die Wirkung von As2O3 auf die normale Hämopoese sowie auf die BCR/ABL-positive Leukämie überprüft. Es konnte gezeigt werden, daß As2O3 die normale Hämopoese nicht stört und bei 25% der behandelten Tiere zu einer Verbesserung des Blutbildes und einem längerem Überleben führt. Sowohl das therapeutische Angreifen an der Oligomerisierungsoberfläche von BCR/ABL als auch das Ausnützen der Modifikation von PML durch BCR/ABL eröffnen neue Möglichkeiten zur Behandlung von Ph+ Leukämien

    BCR and its mutants, the reciprocal t(9;22)-associated ABL/BCR fusion proteins, differentially regulate the cytoskeleton and cell motility

    Get PDF
    BACKGROUND: The reciprocal (9;22) translocation fuses the bcr (breakpoint cluster region) gene on chromosome 22 to the abl (Abelson-leukemia-virus) gene on chromosome 9. Depending on the breakpoint on chromosome 22 (the Philadelphia chromosome – Ph+) the derivative 9+ encodes either the p40((ABL/BCR) )fusion transcript, detectable in about 65% patients suffering from chronic myeloid leukemia, or the p96((ABL/BCR) )fusion transcript, detectable in 100% of Ph+ acute lymphatic leukemia patients. The ABL/BCRs are N-terminally truncated BCR mutants. The fact that BCR contains Rho-GEF and Rac-GAP functions strongly suggest an important role in cytoskeleton modeling by regulating the activity of Rho-like GTPases, such as Rho, Rac and cdc42. We, therefore, compared the function of the ABL/BCR proteins with that of wild-type BCR. METHODS: We investigated the effects of BCR and ABL/BCRs i.) on the activation status of Rho, Rac and cdc42 in GTPase-activation assays; ii.) on the actin cytoskeleton by direct immunofluorescence; and iii) on cell motility by studying migration into a three-dimensional stroma spheroid model, adhesion on an endothelial cell layer under shear stress in a flow chamber model, and chemotaxis and endothelial transmigration in a transwell model with an SDF-1α gradient. RESULTS: Here we show that both ABL/BCRs lost fundamental functional features of BCR regarding the regulation of small Rho-like GTPases with negative consequences on cell motility, in particular on the capacity to adhere to endothelial cells. CONCLUSION: Our data presented here describe for the first time an analysis of the biological function of the reciprocal t(9;22) ABL/BCR fusion proteins in comparison to their physiological counterpart BCR

    Targeting of the N-terminal coiled coil oligomerization interface by a Helix-2 peptide inhibits unmutated and imatinib-resistant BCR/ABL

    No full text
    The BCR/ABL oncogene is responsible for the phenotype of Philadelphia chromosome-positive (Ph+) leukemia. BCR/ABL exhibits an aberrant ABL-tyrosine kinase activity. The treatment of advanced Ph+ leukemia with selective ABL-kinase inhibitors such as Imatinib, Nilotinib and Dasatinib is initially effective but rapidly followed by resistance mainly because of specific mutations in BCR/ABL. Tetramerization of ABL through the N-terminal coiled-coil region (CC) of BCR is essential for the ABL-kinase activation. Targeting the CC-domain forces BCR/ABL into a monomeric conformation reduces its kinase activity and increases the sensitivity for Imatinib. We show that (i) targeting the tetramerization by a peptide representing the Helix-2 of the CC efficiently reduced the autophosphorylation of both unmutated and mutated BCR/ABL; (ii) Helix-2 inhibited the transformation potential of BCR/ABL independently of the presence of mutations; and (iii) Helix-2 efficiently cooperated with Imatinib as revealed by their effects on the transformation potential and the factor-independence related to BCR/ABL with the exception of mutant T315I. These findings support earlier observations that BCR/ABL harboring the T315I mutation have a transformation potential that is at least partially independent of its kinase activity. These data provide evidence that the inhibition of tetramerization inhibits BCR/ABL-mediated transformation and can contribute to overcome Imatinib-resistance. (C) 2008 Wiley-Liss, Inc

    A Bivalent Trans-Amplifying RNA Vaccine Candidate Induces Potent Chikungunya and Ross River Virus Specific Immune Responses

    No full text
    Alphaviruses such as the human pathogenic chikungunya virus (CHIKV) and Ross River virus (RRV) can cause explosive outbreaks raising public health concerns. However, no vaccine or specific antiviral treatment is yet available. We recently established a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). This novel system consists of a replicase-encoding mRNA and a trans-replicon (TR) RNA encoding the antigen. The TR-RNA is amplified by the replicase in situ. We were interested in determining whether multiple TR-RNAs can be amplified in parallel and if, thus, a multivalent vaccine candidate can be generated. In vitro, we observed an efficient amplification of two TR-RNAs, encoding for the CHIKV and the RRV envelope proteins, by the replicase, which resulted in a high antigen expression. Vaccination of BALB/c mice with the two TR-RNAs induced CHIKV- and RRV-specific humoral and cellular immune responses. However, antibody titers and neutralization capacity were higher after immunization with a single TR-RNA. In contrast, alphavirus-specific T cell responses were equally potent after the bivalent vaccination. These data show the proof-of-principle that the taRNA system can be used to generate multivalent vaccines; however, further optimizations will be needed for clinical application

    Leukemia-associated translocation products able to activate RAS modify PML and render cells sensitive to arsenic-induced apoptosis.

    No full text
    Since the 19th century, arsenic (As2O3) has been used in the treatment of chronic myelogenous leukemia (CML) characterized by the t(9;22) translocation. As2O3 induces complete remissions in patients with acute promyelocytic leukemia. The response to As2O3 is genetically determined by the t(15;17)-or the t(9;22)-specific fusion proteins PML/RARalpha or BCR/ABL. The PML portion of PML/RARalpha is crucial for the sensitivity to As2O3. PML is nearly entirely contained in PML/RARalpha. PML is upregulated by oncogenic RAS in primary fibroblasts. The aberrant kinase activity of BCR/ABL leads to constitutive activation of RAS. Therefore, we hypothesized that BCR/ABL could increase sensitivity to As2O2-induced apoptosis by modifying PML expression. To disclose the mechanism of As2O3-induced apoptosis in PML/RARalpha- and BCR/ABL-expressing cells, we focused on the role of PML for As2O3-induced cell death. Here we report that (i) sensitivity to As2O3-induced apoptosis of U937 cells can be increased either by overexpression of PML, or by conditional expression of activated RAS; (ii) also the expression of the t(8;21)-related AML-1/ETO increased sensitivity to As2O3-induced apoptosis; (iii) both BCR/ABL and AML-1/ETO activated RAS and modified the PML expression pattern; (iv) the expression of either BCR/ABL or AML-1/ETO rendered U937 cells sensitive to interferon alpha-induced apoptosis. In summary, these data suggest a crucial role of factors able to upregulate PML for As2O2-induced cell death

    Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARalpha-positive leukemic stem cells.

    Get PDF
    BACKGROUND AND OBJECTIVES:Stem cells play an important role in the pathogenesis and maintenance of most malignant tumors. Acute myeloid leukemia (AML) is a stem cell disease. The inefficient targeting of the leukemic stem cells (LSC) is considered responsible for relapse after the induction of complete hematologic remission (CR) in AML. Acute promyelocytic leukemia (APL) is a subtype of AML characterized by the t(15;17) translocation and expression of the PML/RARalpha fusion protein. Treatment of APL with all-trans retinoic acid (ATRA) induces CR, but not molecular remission (CMR), because the fusion transcript remains detectable, followed by relapse within a few months. Arsenic induces high rates of CR and CMR followed by a long relapse-free survival (RFS). Here we compared the effects of ATRA and arsenic on PML/RARalpha-positive stem cell compartments. DESIGN AND METHODS:As models for the PML/RARalpha-positive LSC we used: (i) Sca1+/lin- murine HSC retrovirally transduced with PML/RARalpha; (ii) LSC from mice with PML/RARalpha-positive leukemia; (iii) the side population of the APL cell line NB4. RESULTS:In contrast to ATRA, arsenic abolishes the aberrant stem cell capacity of PML/RARalpha-positive stem cells. Arsenic had no apparent influence on the proliferation of PML/RARalpha-positive stem cells, whereas ATRA greatly increased the proliferation of these cells. Furthermore ATRA induces proliferation of APL-derived stem cells, whereas arsenic inhibits their growth. INTERPRETATIONS AND CONCLUSIONS:Taken together our data suggest a relationship between the capacity of a compound to target the leukemia-initiating cell and its ability to induce long relapse-free survival. These data strongly support the importance of efficient LSC-targeting for the outcome of patients with leukemia

    Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells.

    No full text
    Histone deacetylase inhibitors have attracted considerable attention because of their ability to overcome the differentiation block in leukemic blasts, an effect achieved either alone or in combination with differentiating agents, such as all-trans retinoic acid. We have previously reported favorable effects of the potent histone deacetylase inhibitor valproic acid in combination with all-trans retinoic acid in patients with advanced acute myeloid leukemia leading to blast cell reduction and improvement of hemoglobin. These effects were accompanied by hypergranulocytosis most likely due to an enhancement of nonleukemic myelopoiesis and the suppression of malignant hematopoiesis rather than enforced differentiation of the leukemic cells. These data prompted us to investigate the effect of valproic acid on normal hematopoietic stem cells (HSC). Here we show that valproic acid increases both proliferation and self-renewal of HSC. It accelerates cell cycle progression of HSC accompanied by a down-regulation of p21(cip-1/waf-1). Furthermore, valproic acid inhibits GSK3beta by phosphorylation on Ser9 accompanied by an activation of the Wnt signaling pathway as well as by an up-regulation of HoxB4, a target gene of Wnt signaling. Both are known to directly stimulate the proliferation of HSC and to expand the HSC pool. In summary, we here show that valproic acid, known to induce differentiation or apoptosis in leukemic blasts, stimulates the proliferation of normal HSC, an effect with a potential effect on its future role in the treatment of acute myeloid leukemia

    The integrity of the charged pocket in the BTB/POZ domain is essential for the phenotype induced by the leukemia-associated t(11;17) fusion protein PLZF/RARalpha.

    No full text
    Acute myeloid leukemia is characterized by a differentiation block as well as by an increased self-renewal of hematopoietic precursors in the bone marrow. This phenotype is induced by specific acute myeloid leukemia-associated translocations, such as t(15;17) and t(11;17), which involve an identical portion of the retinoic acid receptor alpha (RARalpha) and either the promyelocytic leukemia (PML) or promyelocytic zinc finger (PLZF) genes, respectively. The resulting fusion proteins form high molecular weight complexes and aberrantly bind several histone deacetylase-recruiting nuclear corepressor complexes. The amino-terminal BTB/POZ domain is indispensable for the capacity of PLZF to form high molecular weight complexes. Here, we studied the role of dimerization and binding to histone deacetylase-recruiting nuclear corepressor complexes for the induction of the leukemic phenotype by PLZF/RARalpha and we show that (a) the BTB/POZ domain mediates the oligomerization of PLZF/RARalpha; (b) mutations that inhibit dimerization of PLZF do the same in PLZF/RARalpha; (c) the PLZF/RARalpha-related block of differentiation requires an intact BTB/POZ domain; (d) the mutations interfering with either folding of the BTB/POZ domain or with its charged pocket prevent the self-renewal of PLZF/RARalpha-positive hematopoietic stem cells. Taken together, these data provide evidence that the dimerization capacity and the formation of a functionally charged pocket are indispensable for the PLZF/RARalpha-induced leukemogenesis
    corecore