95 research outputs found
Spectroscopy of F
The structure of the weakly-bound F odd-odd nucleus,
produced from Na nuclei, has been investigated at GANIL by means of
the in-beam -ray spectroscopy technique. A single -line is
observed at 657(7) keV in F which has been ascribed to the decay of
the excited J= state to the J=1 ground state. The possible presence of
intruder negative parity states in F is also discussed.Comment: 3 pages, 1 figure, accepted for publication in Physical Review
Evidence for a spin-aligned neutron-proton paired phase from the level structure of Pd
The general phenomenon of shell structure in atomic nuclei has been
understood since the pioneering work of Goeppert-Mayer, Haxel, Jensen and
Suess.They realized that the experimental evidence for nuclear magic numbers
could be explained by introducing a strong spin-orbit interaction in the
nuclear shell model potential. However, our detailed knowledge of nuclear
forces and the mechanisms governing the structure of nuclei, in particular far
from stability, is still incomplete. In nuclei with equal neutron and proton
numbers (), the unique nature of the atomic nucleus as an object
composed of two distinct types of fermions can be expressed as enhanced
correlations arising between neutrons and protons occupying orbitals with the
same quantum numbers. Such correlations have been predicted to favor a new type
of nuclear superfluidity; isoscalar neutron-proton pairing, in addition to
normal isovector pairing (see Fig. 1). Despite many experimental efforts these
predictions have not been confirmed. Here, we report on the first observation
of excited states in nucleus Pd. Gamma rays emitted
following the Ni(Ar,2)Pd fusion-evaporation reaction
were identified using a combination of state-of-the-art high-resolution
{\gamma}-ray, charged-particle and neutron detector systems. Our results reveal
evidence for a spin-aligned, isoscalar neutron-proton coupling scheme,
different from the previous prediction. We suggest that this coupling scheme
replaces normal superfluidity (characterized by seniority coupling) in the
ground and low-lying excited states of the heaviest N = Z nuclei. The strong
isoscalar neutron- proton correlations in these nuclei are predicted to
have a considerable impact on their level structures, and to influence the
dynamics of the stellar rapid proton capture nucleosynthesis process.Comment: 13 pages, 3 figure
Spectroscopy of low-spin states in 157Dy : Search for evidence of enhanced octupole correlations
CITATION: Majola, S. N. T., et al. 2019. Spectroscopy of low-spin states in 157Dy : Search for evidence of enhanced octupole correlations. Physical Review C, 100(6):034322, doi:10.1103/PhysRevC.100.034322.The original publication is available at https://journals.aps.org/prcLow-spin states of ¹⁵⁷Dy have been studied using the JUROGAM II array, following the ¹⁵⁵Gd (α, 2n) reaction at a beam energy of 25 MeV. The level scheme of ¹⁵⁷Dy has been expanded with four new bands. Rotational structures built on the [523]5/2⁻ and [402]3/2⁺ neutron orbitals constitute new additions to the level scheme as do many of the inter- and intraband transitions. This manuscript also reports the observation of cross I⁺ →(I–1) ⁻ and I⁻ →(I–1)⁺ E1 dipole transitions interlinking structures built on the [523]5/2⁻ (band 5) and [402]3/2⁺ (band 7) neutron orbitals. These interlacing band structures are interpreted as the bands of parity doublets with simplex quantum number s=–i related to possible octupole correlations.https://journals.aps.org/prc/abstract/10.1103/PhysRevC.100.034322Publisher's versio
First candidates for γ vibrational bands built on the [505] 11/2− neutron orbital in odd-A Dy isotopes:
Rotational structures have been measured using the Jurogam II and GAMMASPHERE arrays at low spin following the 155Gd(α,2n)157Dy and 148Nd(12C,5n)155Dy reactions at 25 and 65 MeV, respectively. We report high-K bands, which are conjectured to be the first candidates of a Kπ=2+γ vibrational band, built on the [505]11/2− neutron orbital, in both odd-A155,157Dy isotopes. The coupling of the first excited K=0+ states or the so-called β vibrational bands at 661 and 676 keV in 154Dy and 156Dy to the [505]11/2− orbital, to produce a Kπ=11/2− band, was not observed in both 155Dy and 157Dy, respectively. The implication of these findings on the interpretation of the first excited 0+ states in the core nuclei 154Dy and 156Dy are also discussed
- …