43 research outputs found
Optimisation électrique et géométrique d'un électrofiltre à barrière diélectrique en configuration fil-tube carré. Application aux particules submicroniques
L'objectif de ce travail est l'étude de l'efficacité de collecte des particules submicroniques d'un électrofiltre deconfiguration fil-tube carré en utilisant une Décharge à Barrière Diélectrique (DBD). Les expériences sont faites avec desparticules de fumée d'encens ayant une taille moyenne d'environ 0,32 pm. La répartition en taille des particules à la sortie del'électrofiltre est mesurée grâce à un spectromètre d'aérosols à lumière blanche. L'efficacité de collecte est estimé pour diversestensions et fréquences appliquées (gammes : 4-30 kV, de 0,3 à 1000 Hz) à un débit d'air fixe.Le premier volet de l'analyse a consisté en une caractérisation électrique et granulomètrique de l'électrofiltre de configurationcarré dit de référence. Les résultats obtenus ont montré que le comportement électrique de l'électrofiltre de géométrie carré estsimilaire à celui de géométrie cylindrique. Aussi, l'utilisation de la DBD pour la précipitation donnait de très bons résultats enconfiguration fil-tube carré (plus de 99% d efficacité). Le second volet de notre étude a été consacré à l'optimisation géométrique de l'électrofiltre de référence. Les résultats ont montré que le diamètre du fil, le nombre des faces collectrices ont une influence minime sur la précipitation. Tandis que, la section du tube et la largeur de la contre électrode et sa discrétisation ont une influence importante. L'analyse de l'effet de la présence d'une deuxième Barrière Diélectrique (BD) a montré qu'à la différence de la simple BD ou le mode de décharge est assez homogène, la décharge a un comportement filamentaire dans le cas de la double BD. Aussi, l'efficacité de collecte des particules pour les deux conThe objective of this work is the study of the collection efficiency of submicron particles with wire-to-square tubeElectroStatic Precipitator (ESP) using a Dielectric Barrier Discharge (DBD). The experiments are performed with incense smokeparticles having a mean size of about 0.32 m. An aerosol spectrometer is employed for characterizing the size distribution ofthese particles at the outlet of the ESPs. The collection efficiency is estimated for various applied voltages and frequencies(ranges: 4 30 kV, 0.3 1000 Hz) at a fixed air flow rate.The first step of our study consisted of an electrical characterization of the reference precipitator and the evaluation of itscollection efficiency performances. The results have shown that electrical behavior of the wire-to-square tube configuration issimilar to the wire-to- cylinder configuration. Furthermore, it reveals that the square configuration charged with a DBD gives verygood results (more than 99% of efficiency). The second step of the study was devoted to the geometrical optimization of thesquare ESP. The obtained results have established that the wire diameter, the number of faces has a minimal effect on electrostatic precipitation. However, the tube section, the width of the ground electrode and its discretization have an important effect. Also, the analysis of the effect of the presence of a second Dielectric Barrier (DB) has shown that in the case of the single DB, the discharge mode is rather homogeneous. In contrast, the discharge has a filamentary behavior in the case of the double DB. Results show that the particle collection efficiency of both ESPs is higher at high applied voltages and within a certaiPOITIERS-SCD-Bib. électronique (861949901) / SudocSudocFranceF
A Fast and Straightforward Solver for Generation Allocation Problem Including Losses using A Hopfield Network
Abstract In this paper, a fast solver for generation allocation problem including transmission losses using a Hopfield Neural Network (HNN) approach is presented. The proposed HNN is distinguished by a direct computation method mapped to the generation allocation problem of thermal generators commonly known as economic dispatch (ED). The developed HNN employs a linear input-output model for the transfer function of neurons. Formulations for solving the ED problem are explored, through the application of these formulations; direct computation instead of iterations for solving the problem without losses becomes possible. Not like the usual Hopfield methods, which select the weighting factors of the energy function by trials, the proposed method determines the corresponding factors only by calculations. To include the transmission losses, a dichotomy method is combined to the Hopfield Neural Network iteratively. The effectiveness of the developed method is identified through its application to the 15-unit system. Computational results manifest that the method has a lot of excellent performances
Analysis of Pulsed electric field pre-treatment for beet juice extraction: Evaluation of treatment chambers configuration effects
The major challenge today for the application of PEF in the industry has interest to increase the production capacity and improve the quality of food products. PEF pre-treatment is a multifactorial process. In addition to the electric field intensity, pulses number and the capacitor value, the configuration of the treatment chamber now presents a significant parameter in this process.Cylindrical and square parallelipedic treatment chambers (TC) are compared and their effect is studied with variation of electric field, number of pulses and capacitor value at frequency of 1Hz. The results show that the cylindrical treatment chamber showed higher beet juice yield with all studied parameters. The quality of extracted juice estimated in terms of absorbance at 530 nm wavelength were determined for each sample and results show that using a cylindrical treatment chamber configuration in PFE technology gives a good juice quality compared with square parallelipedic treatment chamber. The energy consumption during PEF treatment is reduced in the cylindrical treatment chamber due to the low values of the electric field, pulses number and capacitor value compared with square parallelipedic treatment chamber
Modeling of A Two Stages Electrostatic Air Precipitation Process using Response Surface Modeling
Any industrial process needs to work with the optimal operating conditions and thus the evaluation of their robustness is a critical issue. A modeling of a laboratory-scale wire-to-plane two stages electrostatic precipitator for guiding the identification of the set point, is presented this in paper. The procedure consists of formulating recommendations regarding the choice of optimal values for electrostatic precipitation. A two-stages laboratory precipitator was used to carry out the experiments, with samples of wood particles of average granulometric size 10 µm. The parameters considered in the present study are the negative applied high voltage of the ionization stage, the positive voltage of the collection stage and the air speed. First, three “one-factor-at-a-time” experiments were performed followed by a factorial composite design experiments, based on a two-step strategy: 1) identify the domain of variation of the variables; 2) set point identification and optimization of the process
A new design of square paralelipedic treatment chamber for food processing using pulsed electric field
Today, the influence of pulsed electric field is one of the key components in the PEF treatment process. The manuscript focused on the design and development of new multiple square paralelipedic PEF treatment chamber (TC2) which houses several electrodes, and testing the efficacy of this chamber on beet juice extraction compared with a single square paralelipedic treatment chamber (TC1) which houses only two electrodes. The aim of this paper to mention the effect of the Electric Field distribution based on Response Surface Modeling (RSM) for identifying the set point of the juice extraction process using pulsed electric field pre-treatment using a laboratory experimental bench. Obtained results show that the TC2 of PEF treatment has significant effect not only in juice yield, but also for enhancement of the betanin concentration and saving in consumed energy.
Cite as:
Bellebna A., Ramdani N., Khalfi Y., Tilmatine A., A new design of square paralelipedic treatment chamber for food processing using pulsed electric field. Alg. J. Eng. Tech. 2021, 4:45-53. http://dx.doi.org/10.5281/zenodo.4606697
References
Amina Zelmat,Hocine Hadi,Malek Amiali,Tanya Gashovska and Amar Tilmatine, Determination and analysis of the electrical components of a PEF treated equivalent circuit of potato tissue. Int J Environ Stud, 2017, 74(2), 262-274. https://doi.org/10.1080/00207233.2016.1261600.
Gharibi, T. M.; Elhamirad, A.H.; Azarpazhooh, E.; Pedramnia, A.; Sharayei, P., Natural valuable compound extraction from onion by-products using a pulsed electric field, Inter J Biol Chem, 2019, 12(1), 171–180. https://doi.org/10.1093/benz/9780199773787.article.b00077852.
Yashwant Kumar, Krishna Kumar Patel and Vivek Kumar, Pulsed Electric Field Processing in Food Technology, j. eng. stud. tech. approach, 2015, 1(2), 6-17. https://doi.org/10.3923/ajft.2012.506.516.
K.; Sujka. M.; Pankiewicz. U.; Kowalski. R.; The application of PEF technology in food processing and human nutrition, J Food Sci Technol, 2020, 58(2):397–411. https://doi.org/10.1007/s13197-020-04512-4
R.M.; Zeng. X Han. Z.; Sahar. A.; Khalil. A.A.; Rahman. U; Khan. M; Mehmood. T., Combined effects of pulsed electric field and ultrasound on bioactive compounds and microbial quality of grapefruit juice, J Food Proc Pres, 2018, 42 (2) 135–150. https://doi.org/10.1111/jfpp.13507.
R.A.H.; MastwijkabL. H.C.; Berendsena. B.J.M.; Nederhoffa. A.L.; Matsera. A.M.; Van Boekelc. M.A.J.S.; Nierop Groota. M.N., Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juiceEffects on the quality of orange juice and comparison with heat pasteurization. Interl J Food Micro, 2019, 298 (2) 63-73. https://doi.org/10.1016/j.ijfoodmicro.2019.02.015
Rodrigo, D.; Martínez, A.; Harte, F.; Barbosa-Cánovas, G.V.; Rodrigo, M, Study of inactivation of Lactobacillus plantarum in orange-carrot juice by means of pulsed electric fields: Comparison of inactivation kinetics models. J Food Prot, 2007, 64(2), 259–263. https://doi.org/10.4315/0362-028x-64.2.259.
K.; Kopeć. A.; Dróżdż. T.; Kiełbasa. P.; Ostafin. M..; Bulski. K; Oziembłowski. M., Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice, J Food Scie Techn, 2019, 56 (1) 1184–1191. https://doi.org/10.1007/s13197-019-03581-4
T.K, Ngadi. M.O and Raghavan. G.S.V, Pulsed electric field assisted juice extraction from alfalfa, Can. Biosyst. Eng, 2006, 48(3), 33-37. https://doi.org/10.1109/ppc.2013.6627488.
A, and Vorobiev. E, Pulsed electric field assisted pressing of sugar beet slices: towards a novel process of cold juice extraction. Biosystems Eng, 2006, 93(1), 57- 68. https://doi.org/10.1016/j.biosystemseng.2005.09.008.
T.; , Rems. L.;Tarek. M.; Miklavčič. D., Membrane Electroporation and Electropermeabilization: Mechanisms and Models, Annual Review of Biophysics, 2019, 48 (3) 63-91. https://doi.org/10.1146/annurev-biophys-052118-115451
M.S.; Šatkauskas. S., Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation, European Biophysics Journal,2015, 44 (5) 277–289 https://doi.org/10.1016/s0006-3495(90)82348-1
K.; Munekata. E. S.P.; Parniakov. O.; Barba. F. J.; Witt. J.; Toepfl. S.; Wiktor. A.; Lorenzo. J. M., Pulsed electric field and mild heating for milk processing: a review on recent advances, J Sci Food Agri, 2020, 100(1), 16-24. https://doi.org/10.1002/jsfa.9942
Dascalescu, L, Samuila, A, Mihalcioiu. A, Bente. S. and Tilmatine. A, Robust design of electrostatic separation processes, IEEE T IND APPL, 2005, 41(3), 715–720. https://doi.org/10.1109/tia.2005.847308.
Medles K, Tilmatine. A, Rezouga. M, M, Ramdani. Y, Bendaoud. A, Experimental Designs Methodology And Its Application To An Electrostatic Separation Process, MATER TECHNOL: Advanced Performance Materials, 2006, 21(3), 144-147. https://doi.org/10.1179/mte.2006.21.3.144.
A, Bendimerad. S, Younes. M and Dascalescu. L, Experimental analysis and optimization of a free-fall triboelectric separator of granular plastic particles, International Journal of Sustainable Engineering, 2009, 2(3), 184–191. https://doi.org/10.1080/19397030903134532.
A and Dascalescu. L, Set‐point identification of a free‐fall triboelectrostatic separation process for plastic particles, Int J Environ Stud, 2010, 67(1), 27–40. https://doi.org/10.1080/00207230902883960.
Yassine Bellebna,Rabah Ouiddir,Zouaoui Dey, Mohamed Miloudi & Amar Tilmatine, Robustness testing of the juice extraction process using a pulsed electrical field, Int J Environ Stud, 2014, 71(3), 360-371. https://doi.org/10.1080/00207233.2014.916495.
MODDE 5.0, ‘‘User guide and tutorial’’, Umetrics (1999)
Triboelectric Charging of Granular Polymers Previously Exposed to Dielectric Barrier Discharges in Atmospheric Air
International audienc