29 research outputs found

    Curating Interactive Art for Online Conferences: Artist, Curator and Technologist Experiences in Gather.Town

    Full text link
    We present the results of a reflective, practice-based study with creative practitioners who contributed to the Art Track at Creativity & Cognition 2021. We investigate curating an interactive online gallery in the context of the COVID-19 pandemic, focusing on the opportunities afforded and design constraints imposed by the Gather.Town platform and the experiences of the participating practitioners. We present auto-ethnographic reflections from Author 1, who created the online gallery space. We draw on the experience of Author 2 in curatorial research to analyze the experience of emerging practice through interviews with participating artists and curators. Results show that many of the artists were positively surprised by the platform engagement opportunities and conference attendees' engagement with the artworks at the gallery opening, and appreciated the equitable, global reach. Further analysis reveals a desire for future iterations, and an exploration of the platform in a hybrid context, alongside an in-person exhibition

    Stretching positions for the coracohumeral ligament: Strain measurement during passive motion using fresh/frozen cadaver shoulders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Contracture of the coracohumeral ligament is reported to restrict external rotation of the shoulder with arm at the side and restrict posterior-inferior shift of the humeral head. The contracture is supposed to restrict range of motion of the glenohumeral joint.</p> <p>Methods</p> <p>To obtain stretching position of the coracohumeral ligament, strain on the ligament was measured at the superficial fibers of the ligament using 9 fresh/frozen cadaver shoulders. By sequential measurement using a strain gauge, the ligament strain was measured from reference length (L0). Shoulder positions were determined using a 3 Space Tracker System. Through a combination of previously reported coracohumeral stretching positions and those observed in preliminary measurement, ligament strain were measured by passive external rotation from 10° internal rotation, by adding each 10° external rotation, to maximal external rotation.</p> <p>Results</p> <p>Stretching positions in which significantly larger strain were obtained compared to the L0 values were 0° elevation in scapula plane with 40°, 50° and maximum external rotation (5.68%, 7.2%, 7.87%), 30° extension with 50°, maximum external rotation (4.20%, 4.79%), and 30° extension + adduction with 30°, 40°, 50° and maximum external rotation (4.09%, 4.67%, 4.78%, 5.05%)(P < 0.05). No positive strain on the coracohumeral ligament was observed for the previously reported stretching positions; ie, 90° abduction with external rotation or flexion with external rotation.</p> <p>Conclusions</p> <p>Significant strain of the coracohumeral ligament will be achieved by passive external rotation at lower shoulder elevations, extension, and extension with adduction.</p

    TNFα Cooperates with IFN-γ to Repress Bcl-xL Expression to Sensitize Metastatic Colon Carcinoma Cells to TRAIL-mediated Apoptosis

    Get PDF
    BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. CONCLUSIONS/SIGNIFICANCE: TNFα and IFN-γ cooperate to overcome TRAIL resistance at least partially through enhancing caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great promise for further development for the treatment of metastatic colorectal cancer

    Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    Get PDF
    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment

    Tumor-specific gene transfer via an adenoviral vector targeted to the pan-carcinoma antigen EpCAM

    No full text
    The utility of adenoviral vectors for cancer therapy is limited due to their lack of specificity for tumor cells. In order to target adenovirus to tumor, the natural tropism of the adenovirus should be ablated and replaced by a tumor-specific binding domain. To this end, a neutralizing anti-fiber antibody conjugated to an anti-EpCAM antibody was created that targets the adenovirus to the EpCAM antigen present on tumor cells. The EpCAM antigen was chosen as the target because this antigen is highly expressed on a variety of adenocarcinomas of different origin such as breast, ovary, colon and lung, whereas EpCAM expression is limited in normal tissues. In these studies, the EpCAM-targeted adenovirus was shown to infect specifically cancer cell lines of different origin expressing EpCAM such as ovary, colon and head and neck. Gene transfer was blocked by excess anti-EpCAM antibody and dramatically reduced in EpCAM negative cell lines, thus showing the specificity of the EpCAM-targeted adenovirus. Importantly, infection with targeted adenovirus was independent of CAR, which is the natural receptor for adenovirus binding, since blocking of CAR with recombinant fiber knob did not affect infection with targeted adenovirus. Apart from the cancer cell lines, the efficacy of targeted viral infection was studied in freshly isolated primary human colon cancer cells. As colon cancer predominantly metastasizes to liver, and adenovirus has a high tropism for hepatocytes, we also sought to determine if the EpCAM-targeted adenovirus showed reduced infectivity of human liver cells. The bispecific antibody could successfully mediate gene transfer to primary human colon cancer cells, whereas it almost completely abolished infection of liver cells. This work thus demonstrates that EpCAM-targeted adenoviral vectors can be specifically directed to a wide variety of adenocarcinomas. This approach may prove to be useful for selective gene therapy of cancer

    Prolonged maturation and enhanced transduction of dendritic cells migrated from human skin explants after in situ delivery of CD40-targeted adenoviral vectors

    No full text
    Therapeutic tumor vaccination with viral vectors or naked DNA, carrying the genetic code for tumor-associated Ags, critically depends on the in vivo transduction of dendritic cells (DC). Transfection of predominantly nonprofessional APC and only small numbers of DC may hamper proper T cell activation. Aim of this study was, therefore, the targeted, selective, and enhanced in situ transduction of DC. A human skin explant model was used to explore targeted transduction of cutaneous DC after intradermal injection of a bispecific Ab conjugate to link adenoviral (Ad) vectors directly to CD40 on the DC surface. A significantly enhanced transduction efficiency and selectivity, and an increased activation state of migrating DC were thus achieved. Moreover, DC transduced by CD40-targeted Ad maintained their Ag-specific CTL-stimulatory ability for up to 1 wk after the start of migration, in contrast to DC transduced by untargeted Ad, which had lost this capacity by that time. Because DC targeting in vivo might obviate the need for the in vitro culture of autologous DC for adoptive transfer, CD40-targeted Ad vectors constitute a promising new vaccine modality for tumor immunotherapy
    corecore