6 research outputs found
How do electronic carriers cross Si-bound alkyl monolayers?
Electron transport through Si-C bound alkyl chains, sandwiched between n-Si
and Hg, is characterized by two distinct types of barriers, each dominating in
a different voltage range. At low voltage, current depends strongly on
temperature but not on molecular length, suggesting transport by thermionic
emission over a barrier in the Si. At higher voltage, the current decreases
exponentially with molecular length, suggesting tunneling through the
molecules. The tunnel barrier is estimated, from transport and photoemission
data, to be ~1.5 eV with a 0.25me effective mass.Comment: 13 pages, 3 figure
Observation of enhanced chiral asymmetries in the inner-shell photoionization of uniaxially oriented methyloxirane enantiomers
Most large molecules are chiral in their structure: they exist as two
enantiomers, which are mirror images of each other. Whereas the rovibronic
sublevels of two enantiomers are almost identical, it turns out that the
photoelectric effect is sensitive to the absolute configuration of the ionized
enantiomer - an effect termed Photoelectron Circular Dichroism (PECD). Our
comprehensive study demonstrates that the origin of PECD can be found in the
molecular frame electron emission pattern connecting PECD to other fundamental
photophysical effects as the circular dichroism in angular distributions
(CDAD). Accordingly, orienting a chiral molecule in space enhances the PECD by
a factor of about 10
Analytical performance and characterization of MPA-Gly-Gly-His modified sensors
This paper studies the analytical performance and characterization of a peptide modified biosensor towards detection of Cu2+ ions. The peptide modified biosensor is developed by carbodiimide attachment of the Gly-Gly-His tripeptide onto a 3-mercaptopropionic acid (MPA) modified gold surface. X-ray photoelectron spectroscopy (XPS) was used to characterize the steps in the biosensor fabrication. Detection of Cu2+ ions are determined by cyclic and Osteryoung square wave voltammetry. The analytical performance of this biosensor is found to be affected by the pH, salt concentration, temperature and accumulation time of the test solution. Interference studies and investigations of the reusability of this biosensor have also been performed
Evasion of cGAS and TRIM5 defines pandemic HIV
Of the 13 known independent zoonoses of simian immunodeficiency viruses to humans, only one, leading to human immunodeficiency virus (HIV) type 1(M) has become pandemic, causing over 80 million human infections. To understand the specific features associated with pandemic human-to-human HIV spread, we compared replication of HIV-1(M) with non-pandemic HIV-(O) and HIV-2 strains in myeloid cell models. We found that non-pandemic HIV lineages replicate less well than HIV-1(M) owing to activation of cGAS and TRIM5-mediated antiviral responses. We applied phylogenetic and X-ray crystallography structural analyses to identify differences between pandemic and non-pandemic HIV capsids. We found that genetic reversal of two specific amino acid adaptations in HIV-1(M) enables activation of TRIM5, cGAS and innate immune responses. We propose a model in which the parental lineage of pandemic HIV-1(M) evolved a capsid that prevents cGAS and TRIM5 triggering, thereby allowing silent replication in myeloid cells. We hypothesize that this capsid adaptation promotes human-to-human spread through avoidance of innate immune response activation