2 research outputs found

    Longitudinal retinal changes in MOGAD

    Get PDF
    OBJECTIVE: Patients with myelin oligodendrocyte glycoprotein antibody (MOG-IgG) associated disease (MOGAD) suffer from severe optic neuritis (ON) leading to retinal neuro-axonal loss, which can be quantified by optical coherence tomography (OCT). We assessed whether ON-independent retinal atrophy can be detected in MOGAD. METHODS: Eighty MOGAD patients and 139 healthy controls (HC) were included. OCT data was acquired with 1) Spectralis spectral domain OCT (MOGAD (N=66) and HC (N=103)) and 2) Cirrus HD-OCT (MOGAD (N=14) and HC (N=36)). Macular combined ganglion cell and inner plexiform layer (GCIPL) and peripapillary retinal nerve fibre layer (pRNFL) were quantified. RESULTS: At baseline, GCIPL and pRNFL were lower in MOGAD eyes with a history of ON (MOGAD-ON) compared with MOGAD eyes without a history of ON (MOGAD-NON) and HC (p12 months ago (p<0.001). The overall MOGAD cohort did not exhibit faster GCIPL thinning compared with HC. INTERPRETATION: Our study suggests the absence of attack-independent retinal damage in MOGAD. Yet, ongoing neuroaxonal damage or oedema resolution seems to occur for up to 12 months after ON, which is longer than what has been reported with other ON forms. These findings support that the pathomechanisms underlying optic nerve involvement and the evolution of OCT retinal changes after ON is distinct in MOGAD. This article is protected by copyright. All rights reserved

    Diagnosis and classification of optic neuritis

    No full text
    There is no consensus regarding the classification of optic neuritis, and precise diagnostic criteria are not available. This reality means that the diagnosis of disorders that have optic neuritis as the first manifestation can be challenging. Accurate diagnosis of optic neuritis at presentation can facilitate the timely treatment of individuals with multiple sclerosis, neuromyelitis optica spectrum disorder, or myelin oligodendrocyte glycoprotein antibody-associated disease. Epidemiological data show that, cumulatively, optic neuritis is most frequently caused by many conditions other than multiple sclerosis. Worldwide, the cause and management of optic neuritis varies with geographical location, treatment availability, and ethnic background. We have developed diagnostic criteria for optic neuritis and a classification of optic neuritis subgroups. Our diagnostic criteria are based on clinical features that permit a diagnosis of possible optic neuritis; further paraclinical tests, utilising brain, orbital, and retinal imaging, together with antibody and other protein biomarker data, can lead to a diagnosis of definite optic neuritis. Paraclinical tests can also be applied retrospectively on stored samples and historical brain or retinal scans, which will be useful for future validation studies. Our criteria have the potential to reduce the risk of misdiagnosis, provide information on optic neuritis disease course that can guide future treatment trial design, and enable physicians to judge the likelihood of a need for long-term pharmacological management, which might differ according to optic neuritis subgroups
    corecore