5 research outputs found

    Degradation of HIF-1alpha under Hypoxia Combined with Induction of Hsp90 Polyubiquitination in Cancer Cells by Hypericin: a Unique Cancer Therapy

    Get PDF
    The perihydroxylated perylene quinone hypericin has been reported to possess potent anti-metastatic and antiangiogenic activities, generated by targeting diverse crossroads of cancer-promoting processes via unique mechanisms. Hypericin is the only known exogenous reagent that can induce forced poly-ubiquitination and accelerated degradation of heat shock protein 90 (Hsp90) in cancer cells. Hsp90 client proteins are thereby destabilized and rapidly degraded. Hsp70 client proteins may potentially be also affected via preventing formation of hsp90-hsp70 intermediate complexes. We show here that hypericin also induces enhanced degradation of hypoxia-inducible factor 1α (HIF-1α) in two human tumor cell lines, U87-MG glioblastoma and RCC-C2VHL−/− renal cell carcinoma and in the non-malignant ARPE19 retinal pigment epithelial cell line. The hypericin-accelerated turnover of HIF-1α, the regulatory precursor of the HIF-1 transcription factor which promotes hypoxic stress and angiogenic responses, overcomes the physiologic HIF-1α protein stabilization which occurs in hypoxic cells. The hypericin effect also eliminates the high HIF-1α levels expressed constitutively in the von-Hippel Lindau protein (pVHL)-deficient RCC-C2VHL−/− renal cell carcinoma cell line. Unlike the normal ubiquitin-proteasome pathway-dependent turnover of HIF-α proteins which occurs in normoxia, the hypericin-induced HIF-1α catabolism can occur independently of cellular oxygen levels or pVHL-promoted ubiquitin ligation of HIF-1α. It is mediated by lysosomal cathepsin-B enzymes with cathepsin-B activity being optimized in the cells through hypericin-mediated reduction in intracellular pH. Our findings suggest that hypericin may potentially be useful in preventing growth of tumors in which HIF-1α plays pivotal roles, and in pVHL ablated tumor cells such as renal cell carcinoma through elimination of elevated HIF-1α contents in these cells, scaling down the excessive angiogenesis which characterizes these tumors

    Transcleral approach for closing retinal tears using DuraSealâ„¢ hydrogel sealant

    No full text
    Purpose: The aim of this study was to evaluate an innovative approach for closing retinal tears using DuraSealâ„¢ (DS) hydrogel sealant in a rabbit model. Methods: Retinal detachment with a small tear was performed on 20 New Zealand rabbits. Thereafter, rabbits were divided into two groups; the experimental group received a transscleral injection of 0.1 ml DS into the subretinal space whereas the control group received sham injection of saline. Eyes were clinically evaluated using indirect ophthalmoscopy, retinal function was recorded in ten rabbits by electroretinography and the sealant's toxicity was evaluated histopathologically. Results: We found that the DS hydrogel was easily injected transsclerally into the subretinal space of the detached retinas with no major complications. Retinal reattachment was seen in both groups within 2 weeks with no toxicity to the sensory retina. There were no significant differences in retinal function between groups. Conclusion: Subretinal injection of hydrogel through a transscleral route is easy to perform and may open a new avenue in the treatment of retinal detachment. However, the efficacy of the DS as a tamponade for sealing retinal tear is yet to be definite. Long-term clinical, functional, and toxicological studies are needed to evaluate its full potential for clinical applications

    Changes in Retinal Function and Cellular Remodeling Following Experimental Retinal Detachment in a Rabbit Model

    No full text
    Purpose. To explore functional electroretinographic (ERG) changes and associated cellular remodeling following experimental retinal detachment in a rabbit model. Methods. Retinal detachment was created in ten rabbits by injecting 0.1 ml balanced salt solution under the retina. Fundus imaging was performed 0, 3, 7, 14, and 21 days postoperatively. ERGs were recorded pre- and 7 and 21 days postoperatively. Eyes were harvested on day 21 and evaluated immunohistochemically (IHC) for remodeling of second- and third-order neurons. Results. Retinal reattachment occurred within two weeks following surgery. No attenuation was observed in the photopic or scotopic a- and b-waves. A secondary wavefront on the descending slope of the scotopic b-wave was the only ERG result that was attenuated in detached retinas. IHC demonstrated anatomical changes in both ON and OFF bipolar cells. Bassoon staining was observed in the remodeled dendrites. Amacrine and horizontal cells did not alter, but Muller cells were clearly reactive with marked extension. Conclusion. Retinal detachment and reattachment were associated with functional and anatomical changes. Exploring the significance of the secondary scotopic wavefront and its association with the remodeling of 2nd- and 3rd-order neurons will shade more light on functional changes and recovery of the retina

    Effective Prevention of Microbial Biofilm Formation on Medical Devices by Low-Energy Surface Acoustic Waves

    No full text
    Low-energy surface acoustic waves generated from electrically activated piezo elements are shown to effectively prevent microbial biofilm formation on indwelling medical devices. The development of biofilms by four different bacteria and Candida species is prevented when such elastic waves with amplitudes in the nanometer range are applied. Acoustic-wave-activated Foley catheters have all their surfaces vibrating with longitudinal and transversal dispersion vectors homogeneously surrounding the catheter surfaces. The acoustic waves at the surface are repulsive to bacteria and interfere with the docking and attachment of planktonic microorganisms to solid surfaces that constitute the initial phases of microbial biofilm development. FimH-mediated adhesion of uropathogenic Escherichia coli to guinea pig erythrocytes was prevented at power densities below thresholds that activate bacterial force sensor mechanisms. Elevated power densities dramatically enhanced red blood cell aggregation. We inserted Foley urinary catheters attached with elastic-wave-generating actuators into the urinary tracts of male rabbits. The treatment with the elastic acoustic waves maintained urine sterility for up to 9 days compared to 2 days in control catheterized animals. Scanning electron microscopy and bioburden analyses revealed diminished biofilm development on these catheters. The ability to prevent biofilm formation on indwelling devices and catheters can benefit the implanted medical device industry
    corecore