74 research outputs found

    Genes of tumor necrosis factors and their receptors and the primary open angle glaucoma in the population of Central Russia

    Get PDF
    To examine the association of genetic polymorphisms (-308)G/A TNFα, (+250)A/G Ltα, (+36)A/G TNFR1, (+1663) A/G TNFR2 with the development of primary open angle glaucoma (POAG) among people in Central Russi

    Gene Transfer of Engineered Calmodulin Alleviates Ventricular Arrhythmias in a Calsequestrin-Associated Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic syndrome characterized by sudden death. There are several genetic forms of CPVT associated with mutations in genes encoding the cardiac ryanodine receptor (RyR2) and its auxiliary proteins including calsequestrin (CASQ2) and calmodulin (CaM). It has been suggested that impairment of the ability of RyR2 to stay closed (ie, refractory) during diastole may be a common mechanism for these diseases. Here, we explore the possibility of engineering CaM variants that normalize abbreviated RyR2 refractoriness for subsequent viral-mediated delivery to alleviate arrhythmias in non-CaM-related CPVT

    Immunogenicity of recombinant fragment of orthopoxvirus p35 protein in mice

    Get PDF
    Despite the elimination of smallpox, orthopoxviruses continue to be a source of biological danger for humans, as cowpox and monkey pox viruses circulate in nature and the last virus can cause both sporadic cases of human diseases and outbreaks of smallpox-like infection. In addition, periodic vaccination is necessary for representatives of some professions (scientists studying pathogenic orthopoxviruses, medical personnel, etc.). Vaccination against smallpox virus with live vaccinia virus, which was widely used during the elimination of smallpox, induces the formation of long-term immunity in vaccinated people. However, providing a high level of protection, the vaccination is often accompanied by serious post-vaccination complications, the probability of which is particularly great for individuals with compromised immunity. In this regard, the development of preparations for the prevention and treatment of infections caused by orthopoxviruses remains important today. The aim of this study was to assess the immunogenicity in the mouse model of recombinant protein р35Δ12, designed previously on the base of the cowpox virus protein p35. It was previously shown that the protein р35Δ12 was recognized by fully human neutralizing anti-orthopoxviral antibody with high affinity. In this work, recombinant protein р35Δ12 produced in E. coli cells XL1-blue and purified by chromatography was used for two-time immunization of mice. Two weeks after the second immunization, blood samples were taken from mice and serum antibodies were analyzed. It was shown by ELISA and Western-blot analysis that immunized mice sera contained IgG antibodies specific to recombinant protein р35Δ12. Confocal microscopy showed that antibodies induced by the р35Δ12 protein were able to recognize Vero E6 cells infected with the LIVP-GFP vaccinia virus. In addition, the antibodies in the serum of immunized mice were able to neutralize the infectivity of the vaccinia virus LIVP-GFP in the plaque reduction neutralization test in vitro. These experiments have demonstrated promising properties of the р35Δ12 protein if it were used as a component of vaccine for prophylaxis of orthopoxvirus infections

    Short-term results of treatment of staphylococcal periprosthetic hip joint infection with combined antibiotics and bacteriophages treatment

    Get PDF
    Infectious complications after primary implantation of the hip joint are 0.5–3 %, and in the case of re-endoprosthetics, the risk of periprosthetic infection can reach 30 %. Also, we should not forget about the high percentage (16–20 %) of recurrence of periprosthetic infection of the hip joint, which leads to an unsatisfactory result of treatment up to amputation of a limb or even death of the patient. The reasons for the recurrence of the infectious process can be antibiotic resistance and antibiotic tolerance of microorganisms, as well as the ability of microorganisms to form biofilms on implants. In this regard, there is a constant need to search for alternative means of antimicrobial therapy, as well as to select the optimal ways of their delivery and deposition, which is of practical importance when performing surgical interventions in traumatology and orthopedics to protect the implantable structure from possible infection of the surgical site. One of the methods currently available to combat bacterial infections acquired antibiotic resistance and antibiotic tolerance is the use of natural viruses that infect bacterial bacteriophages. The above suggests a more effective suppression of periprosthetic infection, including persisters that deviate from antibiotics. It is, as a rule, associated with biofilms if used in conjunction with antibiotics and phages, when the use of bacteriophages predetermines the effectiveness of treatment. With the use of sensitive bacteriophages in the treatment of periprosthetic infections, a significant (p = 0.030) reduction in the rate of recurrence of infection (from 31 to 4.5 %) was observed. The use of lytic bacteriophages in traumatology and orthopedics is of great interest for phagotherapy of infections caused by antibiotic-resistant and biofilm-forming strains of bacteria. A clinical study using a single-stage surgical revision with simultaneous application of antibiotics and phages in the treatment of deep periprosthesis infection of the hip joint endoprosthesis, followed by 12 months follow-up for periprosthetic infection recurrence, demonstrated the effectiveness of the use of combined antibiotic and bacteriophages treatment

    Characterization of the complete genome sequence of the recombinant norovirus GII.P16/GII.4_Sydney_2012 revealed in Russia

    Get PDF
    Noroviruses (the Caliciviridae family) are a common cause of acute gastroenteritis in all age groups. These small non-envelope viruses with a single-stranded (+)RNA genome are characterized by high genetic variability. Continuous changes in the genetic diversity of co-circulating noroviruses and the emergence of new recombinant variants are observed worldwide. Recently, new recombinant noroviruses with a novel GII.P16 polymerase associated with different capsid proteins VP1 were reported. As a part of the surveillance study of sporadic cases of acute gastroenteritis in Novosibirsk, a total of 46 clinical samples from children with diarrhea were screened in 2016. Norovirus was detected in six samples from hospitalized children by RT-PCR. The identified noroviruses were classified as recombinant variants GII.P21/GII.3, GII.Pe/GII.4_Sydney_2012, and GII.P16/GII.4_Sydney_2012 by sequencing of the ORF1/ORF2 junction. In Novosibirsk, the first appearance of the new recombinant genotype GII.P16/GII.4_Sydney_2012 was recorded in spring 2016. Before this study, only four complete genome sequences of the Russian GII.P16/GII.3 norovirus strains were available in the GenBank database. In this work, the complete genome sequence of the Russian strain Hu/GII.P16-GII.4/RUS/Novosibirsk/NS16-C38/2016 (GenBank KY210980) was determined. A comparison of the nucleotide and the deduced amino acid sequences showed a high homology of the Russian strain with GII.P16/GII.4_Sydney_2012 strains from other parts of the world. A comparative analysis showed that several unique substitutions occurred in the GII.P16 polymerase, N-terminal p48 protein, and minor capsid protein VP2 genes, while no unique changes in the capsid VP1 gene were observed. A functional significance of these changes suggests that a wide distribution of the strains with the novel GII.P16 polymerase may be associated both with several amino acid substitutions in the polymerase active center and with the insertion of glutamic acid or glycine in an N-terminal p48 protein that blocks the secretory immunity of intestinal epithelial cells. Further monitoring of genotypes will allow determining the distribution of norovirus recombinants with the polymerase GII.P16 in Russia

    The effect of differences in the third domain of the glycoprotein E of tick-borne encephalitis virus of the Far Eastern, Siberian and European subtypes on the binding of recombinant D3 proteins with a chimeric antibody

    Get PDF
    Currently, a therapeutic drug based on recombinant antibodies for the prevention and treatment of tick-borne encephalitis virus (TBEV) is developed in ICBFM SB RAS, and the chimeric antibody ch14D5 is considered as one of the key components of this drug. It was previously shown that this antibody is directed to the domain D3 of the glycoprotein E of TBEV. It was previously shown that this antibody is able to protect mice from the European subtype of TBEV, strain “Absettarov”, and the presence of virus-neutralizing activity against the Far Eastern subtype of TBEV, strain 205 was also shown for this antibody. However, it remains unclear whether this antibody exhibits selectivity for different subtypes of TBEV. The aim of this study was to investigate the effect of amino acid sequence differences of recombinant D3 domains derived from the glycoprotein E of TBEV of the Far Eastern, Siberian and European subtypes on the binding of the protective antibody ch14D5 to these proteins. Using Western blot analysis and surface plasmon resonance, it was shown that ch14D5 antibody has the highest affinity (KD= 1.7±0.5 nM) for the D3 domain of the TBEV of the “Sofjin-Ru” strain belonging to the Far Eastern subtype of the virus. At the same time, the affinity of ch14D5 antibody for similar D3 proteins derived from “Zausaev”, “1528-99” and “Absettarov” strains of the Siberian and European subtypes of TBEV was noticeably lower (KD= 25±4, 300±50, 250±50 nM, respectively). In addition, information about the spatial arrangement of amino acid residues that are different for the studied recombinant proteins indicates that the epitope recognized by the ch14D5 antibody is in close proximity to the lateral ridge of D3 domain of E glycoprotein

    Myofilament Calcium Sensitivity: Consequences of the Effective Concentration of Troponin I

    Get PDF
    Control of calcium binding to and dissociation from cardiac troponin C (TnC) is essential to healthy cardiac muscle contraction/relaxation. There are numerous aberrant post-translational modifications and mutations within a plethora of contractile, and even non-contractile, proteins that appear to imbalance this delicate relationship. The direction and extent of the resulting change in calcium sensitivity is thought to drive the heart toward one type of disease or another. There are a number of molecular mechanisms that may be responsible for the altered calcium binding properties of TnC, potentially the most significant being the ability of the regulatory domain of TnC to bind the switch peptide region of TnI. Considering TnI is essentially tethered to TnC and cannot diffuse away in the absence of calcium, we suggest that the apparent calcium binding properties of TnC are highly dependent upon an “effective concentration” of TnI available to bind TnC. Based on our previous work, TnI peptide binding studies and the calcium binding properties of chimeric TnC-TnI fusion constructs, and building upon the concept of effective concentration, we have developed a mathematical model that can simulate the steady-state and kinetic calcium binding properties of a wide assortment of disease-related and post-translational protein modifications in the isolated troponin complex and reconstituted thin filament. We predict that several TnI and TnT modifications do not alter any of the intrinsic calcium or TnI binding constants of TnC, but rather alter the ability of TnC to “find” TnI in the presence of calcium. These studies demonstrate the apparent consequences of the effective TnI concentration in modulating the calcium binding properties of TnC

    Development of a stable eukaryotic strain producing fully human monoclonal antibody on the basis of the human antibody against ectromelia virus

    Get PDF
    Fully­human antibodies have a great therapeutic importance; however, the development of stable strains providing a high level of production of full­size antibodies is a challenging task, as antibody molecules contain two types of polypeptide chains. To develop the producing strain, random integration of the plasmid containing the gene encoding the target protein into the genome of the host cells is commonly used. The aim of this study was the development of an original expression system, using gene targeting to integrate the gene encoding the fully­human antibody into the transcriptionally active region of the genome of eukaryotic suspension cells CHO­S. To develop a stable strain, the cassette vector plasmid pCDNA5/FRTDHFR­CH­CL containing the site of homologous recombination and the genes encoding heavy and light chains of the fully human antibody of the IgG1/kappa class was constructed at the first step. Notably, DNA of the plasmid pCDNA5/FRT­DHFR­CH­CL was organized in such a way that the restriction sites for rapid cloning of DNA fragments encoding the variable domains of heavy and light chains were inserted upstream of the sequences encoding constant domains of the heavy and light chains of the antibody. Secondly, DNA fragments encoding the variable domains of the heavy and light chains of antibody against orthopoxvirus protein p35 were inserted into the pCDNA5/FRT­DHFRCH­CL cassette plasmid. Then, CHO­S/FRT cells, which contain the FRT­site for homologous recombination and are able to produce green fluorescence protein GFP, were transfected with the constructed plasmid. After the insertion of the target genes into the FRT­site, GFP production was supposed to stop. Using this selection system, a stable clone producing target antibody fh8E was selected with the level of production of about 100 μg/ml. The binding affinity of purified antibody fh8E with the targeted protein, measured by surface plasmon resonance, was 12 nM. In addition, antibody fh8E demonstrated anti­vaccinia virus activity in the plaque reduction neutralization test in vitro

    Molekular-genetic markers citokines: population prevalence and communication with the multifactorial pathology

    Get PDF
    Research objective: the analysis of distribution of frequencies alleles and genotypes of molekular-genetic markers citokines at patients with multifactorial pathology. The analysis of DNA-markers was carried out by means of standard molecular and population-genetic methods. It is established that the most widespread genotypes both at patients with multifactorial pathology, and in the control are-308GG TNF α and-471CC RANTES

    Genetic characterization of clinical <I>Klebsiella</I> isolates circulating in Novosibirsk

    Get PDF
    72 clinical strains of Klebsiella spp. isolated from samples obtained from humans in Novosibirsk, Russia, were analyzed. Species identification of strains was performed using 16S rRNA and rpoB gene sequences. It was revealed that Klebsiella pneumoniae strains were dominant in the population (57 strains), while the remaining 15 strains were K. grimontii, K. aerogenes, K. oxytoca and K. quasipneumoniae. By molecular serotyping using the wzi gene sequence, K. pneumoniae strains were assigned to twenty-one K-serotypes with a high proportion of virulent K1- and K2-serotypes. It was found that K. pneumoniae strains isolated from the hospitalized patients had a higher resistance to antibiotics compared to the other Klebsiella species. Real-time PCR revealed that the population contained genes of the blaSHV, blaTEM, blaCTX families and the blaOXA-48 gene, which are the genetic determinants of beta-lactam resistance. It has been shown that the presence of the blaCTX sequence correlated with the production of extended-spectrum beta-lactamases, and phenotypic resistance to car-bapenems is due to the presence of the blaOXA-48 gene. At the same time, the carbapenemase genes vim, ndm, kpc, imp were not detected. Among the aminoglycoside resistance genes studied, the aph(6)-Id and aadA genes were found, but their presence did not always coincide with phenotypic resistance. Resistance to fluoroquinolones in the vast majority of strains was accompanied by the presence of the aac(6’)-IB-cr, oqxA, oqxB, qnrB, and qnrS genes in various combinations, while the presence of the oqxA and/or oqxB genes alone did not correlate with resistance to fluoroquinolones. Thus, the detection of blaCTX and blaOXA-48 can be used to quickly predict the production of extended-spectrum beta-lactamases and to determine the resistance of Klebsiella to carbapenems. The detection of the aac(6’)-Ib-cr and/or qnrB/qnrS genes can be used to quickly determine resistance to fluoroquinolones
    corecore