11 research outputs found

    Cancer stem cell niche: the place to be

    Get PDF
    Glioblastoma Multiforme (GBM) is de meest voorkomende en meest agressieve kwaadaardige tumor die ontstaat in de hersenen. Slechts tien procent van de patiënten met een GBM overleeft meer dan vijf jaar, ondanks gecombineerde behandelingen met chirurgie, radiotherapie en chemotherapie. Tijana Borovski richtte zich op een kleine groep kankerstamcellen in het GBM, waarvan gedacht wordt dat ze een cruciale rol spelen bij de groei en de verspreiding van de tumor en bij de resistentie tegen de behandeling. Ze toont aan dat deze kankerstamcellen een complexe groep vormen en erg weinig op elkaar lijken. Het micromilieu van de tumor - vooral de endotheelcellen in de bloedvaatjes die de tumor voeden - is belangrijk voor het in stand houden van de kankerstamcellen. Door de interactie met het micromilieu te verstoren, zou je het beschermende effect op de kankerstamcellen kunnen opheffen en ze gevoelig kunnen maken voor de behandeling

    Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF

    No full text
    Glioblastoma multiforme (GBM) is a rapidly growing malignant brain tumor, which has been reported to be organized in a hierarchical fashion with cancer stem cells (CSCs) at the apex. Recent studies demonstrate that this hierarchy does not follow a one-way route but can be reverted with more differentiated cells giving rise to cells possessing CSC features. We investigated the role of tumor microvascular endothelial cells (tMVECs) in reverting differentiated glioblastoma cells to CSC-like cells. We made use of primary GBM lines and tMVECs. To ensure differentiation, CSC-enriched cultures were forced into differentiation using several stimuli and cultures consisting solely of differentiated cells were obtained by sorting on the oligodendrocyte marker O4. Reversion to the CSC state was assessed phenotypically by CSC marker expression and functionally by evaluating clonogenic and multilineage differentiation potential. Conditioned medium of tMVECs was able to replenish the CSC pool by phenotypically and functionally reverting differentiated GBM cells to the CSC state. Basic fibroblast growth factor (bFGF), secreted by tMVECs, recapitulated the effects of the conditioned medium in inducing re-expression of CSC markers and increasing neurosphere formation ability of differentiated GBM cells. Our findings demonstrate that the CSC-based hierarchy displays a high level of plasticity showing that differentiated GBM cells can acquire CSC features when placed in the right environment. These results point to the need to intersect the elaborate network of tMVECs and GBM CSCs for efficient elimination of GBM CSC

    Cancer Stem Cell Niche: The Place to Be

    No full text
    Tumors are being increasingly perceived as abnormal organs that, in many respects, recapitulate the outgrowth and differentiation patterns of normal tissues. In line with this idea is the observation that only a small fraction of tumor cells is capable of initiating a new tumor. Because of the features that these cells share with somatic stem cells, they have been termed cancer stem cells (CSC). Normal stem cells reside in a "stem cell niche" that maintains them in a stem-like state. Recent data suggest that CSCs also rely on a similar niche, dubbed the "CSC niche," which controls their self-renewal and differentiation. Moreover, CSCs can be generated by the microenvironment through induction of CSC features in more differentiated tumor cells. In addition to a role in CSC maintenance, the microenvironment is hypothesized to be involved in metastasis by induction of the epithelial-mesenchymal transition, leading to dissemination and invasion of tumor cells. The localization of secondary tumors also seems to be orchestrated by the microenvironment, which is suggested to form a premetastatic niche. Thus, the microenvironment seems to be of crucial importance for primary tumor growth as well as metastasis formation. Combined with its role in the protection of CSCs against genotoxic insults, these data strongly put forward the niche as an important target for novel therapies. Cancer Res; 71(3); 634-9. (C)2011 AAC

    Chromatin mobility is increased at sites of DNA double-strand breaks

    No full text
    DNA double-strand breaks (DSBs) can efficiently kill cancer cells, but they can also produce unwanted chromosome rearrangements when DNA ends from different DSBs are erroneously joined. Movement of DSB-containing chromatin domains might facilitate these DSB interactions and promote the formation of chromosome rearrangements. Therefore, we analyzed the mobility of chromatin domains containing DSBs, marked by the fluorescently tagged DSB marker 53BP1, in living mammalian cells and compared it with the mobility of undamaged chromatin on a time-scale relevant for DSB repair. We found that chromatin domains containing DSBs are substantially more mobile than intact chromatin, and are capable of roaming a more than twofold larger area of the cell nucleus. Moreover, this increased DSB mobility, but not the mobility of undamaged chromatin, can be reduced by agents that affect higher-order chromatin organization

    SIRT1/PGC1α-Dependent Increase in Oxidative Phosphorylation Supports Chemotherapy Resistance of Colon Cancer

    No full text
    Chemotherapy treatment of metastatic colon cancer ultimately fails due to development of drug resistance. Identification of chemotherapy-induced changes in tumor biology may provide insight into drug resistance mechanisms. We studied gene expression differences between groups of liver metastases that were exposed to preoperative chemotherapy or not. Multiple patient-derived colonosphere cultures were used to assess how chemotherapy alters energy metabolism by measuring mitochondrial biomass, oxygen consumption, and lactate production. Genetically manipulated colonosphere-initiated tumors were used to assess how altered energy metabolism affects chemotherapy efficacy. Gene ontology and pathway enrichment analysis revealed significant upregulation of genes involved in oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis in metastases that were exposed to chemotherapy. This suggested chemotherapy induces a shift in tumor metabolism from glycolysis towards OXPHOS. Indeed, chemotreatment of patient-derived colonosphere cultures resulted in an increase of mitochondrial biomass, increased expression of respiratory chain enzymes, and higher rates of oxygen consumption. This was mediated by the histone deacetylase sirtuin-1 (SIRT1) and its substrate, the transcriptional coactivator PGC1α. Knockdown of SIRT1 or PGC1α prevented chemotherapy-induced OXPHOS and significantly sensitized patient-derived colonospheres as well as tumor xenografts to chemotherapy. Chemotherapy of colorectal tumors induces a SIRT1/PGC1α-dependent increase in OXPHOS that promotes tumor survival during treatment. This phenomenon is also observed in chemotherapy-exposed resected liver metastases, strongly suggesting that chemotherapy induces long-lasting changes in tumor metabolism that potentially interfere with drug efficacy. In conclusion, we propose a novel mechanism of chemotherapy resistance that may be clinically relevant and therapeutically exploitabl

    Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining

    No full text
    In S and G2 phase mammalian cells DNA double strand breaks (DSBs) can potentially be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). Results of several studies suggest that these two mechanistically distinct repair pathways can compete for DNA ends. Because HR and NHEJ differ with respect to error susceptibility, generation of chromosome rearrangements, which are potentially carcinogenic products of DSB repair, may depend on the pathway choice. To investigate this hypothesis, the influence of HR and NHEJ inhibition on the frequencies of chromosome aberrations in G2 phase cells was investigated. SW-1573 and RKO cells were treated with mild (41 °C) hyperthermia in order to disable HR and/or NU7441/cisplatin to inactivate NHEJ and frequencies of chromosomal fragments (resulting from unrepaired DSBs) and translocations (products of erroneous DSB rejoining) were studied using premature chromosome condensation (PCC) combined with fluorescence in situ hybridization (FISH). It is shown here that temporary inhibition of HR by hyperthermia results in increased frequency of ionizing-radiation (IR)-induced chromosomal translocations and that this effect is abrogated by NU7441- or cisplatin-mediated inhibition of NHEJ. The results suggest that in the absence of HR, DSB repair is shifted to the error-prone NHEJ pathway resulting in increased frequencies of chromosomal rearrangements. These results might be of consequence for clinical cancer treatment approaches that aim at inhibition of one or more DSB repair pathway

    Wnt activity defines colon cancer stem cells and is regulated by the microenvironment

    No full text
    Despite the presence of mutations in APC or beta-catenin, which are believed to activate the Wnt signalling cascade constitutively, most colorectal cancers show cellular heterogeneity when beta-catenin localization is analysed, indicating a more complex regulation of Wnt signalling. We explored this heterogeneity with a Wnt reporter construct and observed that high Wnt activity functionally designates the colon cancer stem cell (CSC) population. In adenocarcinomas, high activity of the Wnt pathway is observed preferentially in tumour cells located close to stromal myofibroblasts, indicating that Wnt activity and cancer stemness may be regulated by extrinsic cues. In agreement with this notion, myofibroblast-secreted factors, specifically hepatocyte growth factor, activate beta-catenin-dependent transcription and subsequently CSC clonogenicity. More significantly, myofibroblast-secreted factors also restore the CSC phenotype in more differentiated tumour cells both in vitro and in vivo. We therefore propose that stemness of colon cancer cells is in part orchestrated by the microenvironment and is a much more dynamic quality than previously expected that can be defined by high Wnt activit

    Wnt activity defines colon cancer stem cells and is regulated by the microenvironment.

    No full text
    Despite the presence of mutations in APC or beta-catenin, which are believed to activate the Wnt signalling cascade constitutively, most colorectal cancers show cellular heterogeneity when beta-catenin localization is analysed, indicating a more complex regulation of Wnt signalling. We explored this heterogeneity with a Wnt reporter construct and observed that high Wnt activity functionally designates the colon cancer stem cell (CSC) population. In adenocarcinomas, high activity of the Wnt pathway is observed preferentially in tumour cells located close to stromal myofibroblasts, indicating that Wnt activity and cancer stemness may be regulated by extrinsic cues. In agreement with this notion, myofibroblast-secreted factors, specifically hepatocyte growth factor, activate beta-catenin-dependent transcription and subsequently CSC clonogenicity. More significantly, myofibroblast-secreted factors also restore the CSC phenotype in more differentiated tumour cells both in vitro and in vivo. We therefore propose that stemness of colon cancer cells is in part orchestrated by the microenvironment and is a much more dynamic quality than previously expected that can be defined by high Wnt activity
    corecore