96 research outputs found

    Microbial secondary metabolites in homes in association with moisture damage and asthma

    Get PDF
    We aimed to characterize the presence of microbial secondary metabolites in homes and their association with moisture damage, mold, and asthma development. Living room floor dust was analyzed by LC-MS/MS for 333 secondary metabolites from 93 homes of 1-year-old children. Moisture damage was present in 15 living rooms. At 6 years, 8 children had active and 15 lifetime doctor-diagnosed asthma. The median number of different metabolites per house was 17 ( range 8-29) and median sum load 65 ( 4-865) ng/m(2). Overall 42 different metabolites were detected. The number of metabolites present tended to be higher in homes with mold odor or moisture damage. The higher sum loads and number of metabolites with loads over 10 ng/m(2) were associated with lower prevalence of active asthma at 6 years ( aOR 0.06 ( 95% CI <0.001-0.96) and 0.05 (<0.001-0.56), respectively). None of the individual metabolites, which presence tended ( P <0.2) to be increased by moisture damage or mold, were associated with increased risk of asthma. Microbial secondary metabolites are ubiquitously present in home floor dust. Moisture damage and mold tend to increase their numbers and amount. There was no evidence indicating that the secondary metabolites determined would explain the association between moisture damage, mold, and the development of asthma.Peer reviewe

    Original Contribution Effects of Cold Weather on Mortality: Results From 15 European Cities Within the PHEWE Project

    Get PDF
    Weather-related health effects have attracted renewed interest because of the observed and predicted climate change. The authors studied the short-term effects of cold weather on mortality in 15 European cities. The effects of minimum apparent temperature on cause-and age-specific daily mortality were assessed for the cold season (October-March) by using data from 1990-2000. For city-specific analysis, the authors used Poisson regression and distributed lag models, controlling for potential confounders. Meta-regression models summarized the results and explored heterogeneity. A 1°C decrease in temperature was associated with a 1.35% (95% confidence interval (CI): 1.16, 1.53) increase in the daily number of total natural deaths and a 1.72% (95% CI: 1.44, 2.01), 3.30% (95% CI: 2.61, 3.99), and 1.25% (95% CI: 0.77, 1.73) increase in cardiovascular, respiratory, and cerebrovascular deaths, respectively. The increase was greater for the older age groups. The cold effect was found to be greater in warmer (southern) cities and persisted up to 23 days, with no evidence of mortality displacement. Cold-related mortality is an important public health problem across Europe. It should not be underestimated by public health authorities because of the recent focus on heat-wave episodes. cold; Europe; mortality; temperature; urban health; weather Abbreviation: PHEWE, Assessment and Prevention of Acute Health Effects of Weather Conditions in Europe

    Impact of Dietary Gluten on Regulatory T Cells and Th17 Cells in BALB/c Mice

    Get PDF
    Dietary gluten influences the development of type 1 diabetes (T1D) and a gluten-free (GF) diet has a protective effect on the development of T1D. Gluten may influence T1D due to its direct effect on intestinal immunity; however, these mechanisms have not been adequately studied. We studied the effect of a GF diet compared to a gluten-containing standard (STD) diet on selected T cell subsets, associated with regulatory functions as well as proinflammatory Th17 cells, in BALB/c mice. Furthermore, we assessed diet-induced changes in the expression of various T cell markers, and determined if changes were confined to intestinal or non-intestinal lymphoid compartments. The gluten-containing STD diet led to a significantly decreased proportion of γδ T cells in all lymphoid compartments studied, although an increase was detected in some γδ T cell subsets (CD8+, CD103+). Further, it decreased the proportion of CD4+CD62L+ T cells in Peyer's patches. Interestingly, no diet-induced changes were found among CD4+Foxp3+ T cells or CD3+CD49b+cells (NKT cells) and CD3−CD49b+ (NK) cells. Mice fed the STD diet showed increased proportions of CD4+CD45RBhigh+ and CD103+ T cells and a lower proportion of CD4+CD45RBlow+ T cells in both mucosal and non-mucosal compartments. The Th17 cell population, associated with the development of autoimmunity, was substantially increased in pancreatic lymph nodes of mice fed the STD diet. Collectively, our data indicate that dietary gluten influences multiple regulatory T cell subsets as well as Th17 cells in mucosal lymphoid tissue while fewer differences were observed in non-mucosal lymphoid compartments

    Gut Microbiota, Probiotics and Diabetes

    Get PDF
    Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes
    corecore