378 research outputs found
Effects of wheat and oat-based whole grain foods on serum lipoprotein size and distribution in overweight middle aged people : a randomised controlled trial
Peer reviewedPublisher PD
Force distributions in a triangular lattice of rigid bars
We study the uniformly weighted ensemble of force balanced configurations on
a triangular network of nontensile contact forces. For periodic boundary
conditions corresponding to isotropic compressive stress, we find that the
probability distribution for single-contact forces decays faster than
exponentially. This super-exponential decay persists in lattices diluted to the
rigidity percolation threshold. On the other hand, for anisotropic imposed
stresses, a broader tail emerges in the force distribution, becoming a pure
exponential in the limit of infinite lattice size and infinitely strong
anisotropy.Comment: 11 pages, 17 figures Minor text revisions; added references and
acknowledgmen
Thermopower of a 2D electron gas in suspended AlGaAs/GaAs heterostructures
We present thermopower measurements on a high electron mobility
two-dimensional electron gas (2DEG) in a thin suspended membrane.We show that
the small dimension of the membrane substantially reduces the thermal
conductivity compared to bulk material so that it is possible to establish a
strong thermal gradient along the 2DEG even at a distance of few micrometers.
We find that the zero-field thermopower is significantly affected by the micro
patterning. In contrast to 2DEGs incorporated in a bulk material, the diffusion
contribution to the thermopower stays dominant up to a temperature of 7 K until
the phonon-drag becomes strong and governs the run of the thermopower. We also
find that the coupling between electrons and phonons in the phonon-drag regime
is due to screened deformation potentials, in contrast to piezoelectric
coupling found with bulk phonons.Comment: 7 page
Theory of Two-Dimensional Josephson Arrays in a Resonant Cavity
We consider the dynamics of a two-dimensional array of underdamped Josephson
junctions placed in a single-mode resonant cavity. Starting from a well-defined
model Hamiltonian, which includes the effects of driving current and
dissipative coupling to a heat bath, we write down the Heisenberg equations of
motion for the variables of the Josephson junction and the cavity mode,
extending our previous one-dimensional model. In the limit of large numbers of
photons, these equations can be expressed as coupled differential equations and
can be solved numerically. The numerical results show many features similar to
experiment. These include (i) self-induced resonant steps (SIRS's) at voltages
V = (n hbar Omega)/(2e), where Omega is the cavity frequency, and n is
generally an integer; (ii) a threshold number N_c of active rows of junctions
above which the array is coherent; and (iii) a time-averaged cavity energy
which is quadratic in the number of active junctions, when the array is above
threshold. Some differences between the observed and calculated threshold
behavior are also observed in the simulations and discussed. In two dimensions,
we find a conspicuous polarization effect: if the cavity mode is polarized
perpendicular to the direction of current injection in a square array, it does
not couple to the array and there is no power radiated into the cavity. We
speculate that the perpendicular polarization would couple to the array, in the
presence of magnetic-field-induced frustration. Finally, when the array is
biased on a SIRS, then, for given junction parameters, the power radiated into
the array is found to vary as the square of the number of active junctions,
consistent with expectations for a coherent radiation.Comment: 11 pages, 8 eps figures, submitted to Phys. Rev
Future aspects of renal transplantation
New and exciting advances in renal transplantation are continuously being made, and the horizons for organ transplantation are bright and open. This article reviews only a few of the newer advances that will allow renal transplantation to become even more widespread and successful. The important and exciting implications for extrarenal organ transplantation are immediately evident. © 1988 Springer-Verlag
Quantum transport using the Ford-Kac-Mazur formalism
The Ford-Kac-Mazur formalism is used to study quantum transport in (1)
electronic and (2) harmonic oscillator systems connected to general reservoirs.
It is shown that for non-interacting systems the method is easy to implement
and is used to obtain many exact results on electrical and thermal transport in
one-dimensional disordered wires. Some of these have earlier been obtained
using nonequilibrium Green function methods. We examine the role that
reservoirs and contacts can have on determining the transport properties of a
wire and find several interesting effects.Comment: 10 pages, 4 figure
Full capacitance-matrix effects in driven Josephson-junction arrays
We study the dynamic response to external currents of periodic arrays of
Josephson junctions, in a resistively capacitively shunted junction (RCSJ)
model, including full capacitance-matrix effects}. We define and study three
different models of the capacitance matrix : Model A
includes only mutual capacitances; Model B includes mutual and self
capacitances, leading to exponential screening of the electrostatic fields;
Model C includes a dense matrix that is constructed
approximately from superposition of an exact analytic solution for the
capacitance between two disks of finite radius and thickness. In the latter
case the electrostatic fields decay algebraically. For comparison, we have also
evaluated the full capacitance matrix using the MIT fastcap algorithm, good for
small lattices, as well as a corresponding continuum effective-medium analytic
evaluation of a finite voltage disk inside a zero-potential plane. In all cases
the effective decays algebraically with distance, with
different powers. We have then calculated current voltage characteristics for
DC+AC currents for all models. We find that there are novel giant capacitive
fractional steps in the I-V's for Models B and C, strongly dependent on the
amount of screening involved. We find that these fractional steps are quantized
in units inversely proportional to the lattice sizes and depend on the
properties of . We also show that the capacitive steps
are not related to vortex oscillations but to localized screened phase-locking
of a few rows in the lattice. The possible experimental relevance of these
results is also discussed.Comment: 12 pages 18 Postscript figures, REVTEX style. Paper to appear in July
1, Vol. 58, Phys. Rev. B 1998 All PS figures include
Quantum-Phase Transitions of Interacting Bosons and the Supersolid Phase
We investigate the properties of strongly interacting bosons in two
dimensions at zero temperature using mean-field theory, a variational Ansatz
for the ground state wave function, and Monte Carlo methods. With on-site and
short-range interactions a rich phase diagram is obtained. Apart from the
homogeneous superfluid and Mott-insulating phases, inhomogeneous charge-density
wave phases appear, that are stabilized by the finite-range interaction.
Furthermore, our analysis demonstrates the existence of a supersolid phase, in
which both long-range order (related to the charge-density wave) and
off-diagonal long-range order coexist. We also obtain the critical exponents
for the various phase transitions.Comment: RevTex, 20 pages, 10 PostScript figures include
Quantum interference and Coulomb interaction in arrays of tunnel junctions
We study the electronic properties of an array of small metallic grains
connected by tunnel junctions. Such an array serves as a model for a granular
metal. Previous theoretical studies of junction arrays were based on models of
quantum dissipation which did not take into account the diffusive motion of
electrons within the grains. We demonstrate that these models break down at
sufficiently low temperatures: for a correct description of the screening
properties of a granular metal at low energies the diffusive nature of the
electronic motion within the grains is crucial. We present both a diagrammatic
and a functional integral approach to analyse the properties of junction
arrays. In particular, a new effective action is obtained which enables us to
describe the array at arbitrary temperature. In the low temperature limit, our
theory yields the correct, dynamically screened Coulomb interaction of a normal
metal, whereas at high temperatures the standard description in terms of
quantum dissipation is recovered.Comment: 14 pages, 7 figure
- …