2 research outputs found

    Using NS1 flavivirus protein microarray to infer past infecting dengue virus serotype and number of past dengue virus infections in Vietnamese individuals

    Get PDF
    Background In recent years, researchers have had an increased focus on multiplex microarray assays, in which antibodies are measured against multiple related antigens, for use in seroepidemiological studies to infer past transmission. Methods We assess the performance of a flavivirus microarray assay for determining past dengue virus (DENV) infection history in a dengue-endemic setting, Vietnam. We tested the microarray on samples from 1 and 6 months postinfection from DENV-infected patients (infecting serotype was determined using reverse-transcription polymerase chain reaction during acute, past primary, and secondary infection assessed using plaque reduction neutralization tests 6 months postinfection). Results Binomial models developed to discriminate past primary from secondary infection using the protein microarray (PMA) titers had high area under the curve (0.90–0.97) and accuracy (0.84–0.86). Multinomial models developed to identify most recent past infecting serotype using PMA titers performed well in those with past primary infection (average test set: κ = 0.85, accuracy of 0.92) but not those with past secondary infection (κ = 0.24, accuracy of 0.45). Conclusions Our results suggest that the microarray will be useful in seroepidemiological studies aimed at classifying the past infection history of individuals (past primary vs secondary and serotype of past primary infections) and thus inferring past transmission intensity of DENV in dengue-endemic settings. Future work to validate these models should be undertaken in different transmission settings and with samples later after infection.</p

    An observational study of breakthrough SARS-CoV-2 Delta variant infections among vaccinated healthcare workers in Vietnam

    No full text
    Background Data on breakthrough SARS-CoV-2 Delta variant infections in vaccinated individuals are limited. Methods We studied breakthrough infections among Oxford-AstraZeneca vaccinated healthcare workers in an infectious diseases hospital in Vietnam. We collected demographic and clinical data alongside serial PCR testing, measurement of SARS-CoV-2 antibodies, and viral whole-genome sequencing. Findings Between 11th–25th June 2021 (7-8 weeks after the second dose), 69 staff tested positive for SARS-CoV-2. 62 participated in the study. Most were asymptomatic or mildly symptomatic and all recovered. Twenty-two complete-genome sequences were obtained; all were Delta variant and were phylogenetically distinct from contemporary viruses obtained from the community or from hospital patients admitted prior to the outbreak. Viral loads inferred from Ct values were 251 times higher than in cases infected with the original strain in March/April 2020. Median time from diagnosis to negative PCR was 21 days (range 8–33). Neutralizing antibodies (expressed as percentage of inhibition) measured after the second vaccine dose, or at diagnosis, were lower in cases than in uninfected, fully vaccinated controls (median (IQR): 69.4 (50.7-89.1) vs. 91.3 (79.6-94.9), p=0.005 and 59.4 (32.5-73.1) vs. 91.1 (77.3-94.2), p=0.043). There was no correlation between vaccine-induced neutralizing antibody levels and peak viral loads or the development of symptoms. Interpretation Breakthrough Delta variant infections following Oxford-AstraZeneca vaccination may cause asymptomatic or mild disease, but are associated with high viral loads, prolonged PCR positivity and low levels of vaccine-induced neutralizing antibodies. Epidemiological and sequence data suggested ongoing transmission had occurred between fully vaccinated individuals
    corecore