28 research outputs found

    Enzymatic dyeing and functional finishing of textile fibres with ferulic acid

    Get PDF
    The catalyzed polymerization of ferulic acid (FA) by laccase from Rhus vernicifera has been studied, and its polymeric products are used for the dyeing and functional finishing of silk, wool, nylon, viscose and cotton fabrics by two methods, namely simultaneous enzymatic polymerization of FA and dyeing at 50 oC (one-step method), and enzymatic polymerization of FA at 50 oC followed by dyeing at 90 oC (two-step method). The analyses of UV-Visible and FTIR spectra show the formation of yellow poly(ferulic acid) (PFA) in which FA units are mainly linked together with C–C bonds. The colouration of PFA on fabrics occurs due to physical adsorption, and not because of interaction of covalent bond between PFA and fibres. The enzymatically dyed fabrics display yellow to orange colour hues, and pale to moderate colour depth, depending on fibre species and dyeing methods. The dyed fabrics show excellent rub fastness and staining fastness during washing, relatively weak light fastness and colour change fastness during washing; the two-step method shows better wash fastness ratings for colour change. The enzymatic dyeing of FA provides fabrics with multifunctional properties of antioxidant activity, UV-protection and deodorization

    Silk Fibroin/Polyvinyl Pyrrolidone Interpenetrating Polymer Network Hydrogels

    Get PDF
    Silk fibroin hydrogel is an ideal model as biomaterial matrix due to its excellent biocompatibility and used in the field of medical polymer materials. Nevertheless, native fibroin hydrogels show poor transparency and resilience. To settle these drawbacks, an interpenetrating network (IPN) of hydrogels are synthesized with changing ratios of silk fibroin/N-Vinyl-2-pyrrolidonemixtures that crosslink by H2O2 and horseradish peroxidase. Interpenetrating polymer network structure can shorten the gel time and the pure fibroin solution gel time for more than a week. This is mainly due to conformation from the random coil to the β-sheet structure changes of fibroin. Moreover, the light transmittance of IPN hydrogel can be as high as more than 97% and maintain a level of 90% within a week. The hydrogel, which mainly consists of random coil, the apertures inside can be up to 200 μm. Elastic modulus increases during the process of gelation. The gel has nearly 95% resilience under the compression of 70% eventually, which is much higher than native fibroin gel. The results suggest that the present IPN hydrogels have excellent mechanical properties and excellent transparency.This work was supported by The National Key Research and Development Program of China (Grant No. 2017YFC1103602), National Natural Science Foundation of China (Grant No. 51373114, 51741301), PAPD and Nature Science Foundation of Jiangsu, China (Grant No. BK20171239, BK20151242).info:eu-repo/semantics/publishedVersio

    Glucose-responsive silk fibroin microneedles for transdermal delivery of insulin

    Get PDF
    Microneedles (MNs) have attracted great interest as a drug delivery alternative to subcutaneous injections for treating diabetes mellitus. We report MNs prepared from polylysine-modified cationized silk fibroin (SF) for responsive transdermal insulin delivery. Scanning electron microscopy analysis of MNs’ appearance and morphology revealed that the MNs were well arranged and formed an array with 0.5 mm pitch, and the length of single MNs is approximately 430 μm. The average breaking force of an MN is above 1.25 N, which guarantees that it can pierce the skin quickly and reach the dermis. Cationized SF MNs are pH-responsive. MNs dissolution rate increases as pH decreases and the rate of insulin release are accelerated. The swelling rate reached 223% at pH = 4, while only 172% at pH = 9. After adding glucose oxidase, cationized SF MNs are glucose-responsive. As the glucose concentration increases, the pH inside the MNs decreases, the MNs’ pore size increases, and the insulin release rate accelerates. In vivo experiments demonstrated that in normal Sprague Dawley (SD) rats, the amount of insulin released within the SF MNs was significantly smaller than that in diabetic rats. Before feeding, the blood glucose (BG) of diabetic rats in the injection group decreased rapidly to 6.9 mmol/L, and the diabetic rats in the patch group gradually reduced to 11.7 mmol/L. After feeding, the BG of diabetic rats in the injection group increased rapidly to 33.1 mmol/L and decreased slowly, while the diabetic rats in the patch group increased first to 21.7 mmol/L and then decreased to 15.3 mmol/L at 6 h. This demonstrated that the insulin inside the microneedle was released as the blood glucose concentration increased. Cationized SF MNs are expected to replace subcutaneous injections of insulin as a new modality for diabetes treatment.National Natural Science Foundation of China (Grant No. 51973144), College Nature Science Research Project of Jiangsu Province, China (Grant No. 20KJA540002), PAPD and Six Talent Peaks Project in Jiangsu Province (Grant No. SWYY-038) supported this work

    Prospects of Silk Sericin Membranes Fabricated with Tyrosinase

    No full text

    Improving the Anti-Pilling Performance of Cellulose Fiber Blended Knitted Fabrics with 2,4,6-Trichloropyrimidine Treatment

    No full text
    Pilling is a common and unresolved problem in knitted fabrics, especially for the cellulose fiber blended fabrics, which not only causes an unattractive appearance and an uncomfortable handle, but also reduces the added value of the products. In this study, four different kinds of knitted fabrics were treated with 2,4,6-trichloropyrimidine (TLP) alkaline emulsion by dipping and pad–dry–cure modification processes. The surface morphology and chemical structure of original and treated fabrics were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The anti-pilling performance, thermal properties, physical and mechanical properties and color features of treated fabrics were also evaluated. The results indicated that TLP was successfully covalently crosslinked onto the surface of the cellulose fibers. The dipping process resulted in a better anti-pilling property than that of the pad–dry–cure process, and both treatments could bring about an excellent anti-pilling property and outstanding laundering durability. A pilling grade of 4.5 was achieved for the treated polyester/viscose (T/V) fabric with the dipping process even after 20 washing cycles. In addition, the treated fabrics displayed an enhanced antistatic property and still maintained a soft handle. Besides, the bursting strength and air permeability of treated samples were found to have a slight deterioration, while no apparent differences were found in the color parameters and colorfastness of dyed fabrics. The above results demonstrate that 2,4,6-trichloropyrimidine has the potential application prospect in the functional finishing and home-caring of textiles

    Preparation of Stable POSS-Based Superhydrophobic Textiles Using Thiol–Ene Click Chemistry

    No full text
    In this study, a superhydrophobic fabric was synthesized by modifying the fiber’s surface with dopamine-containing hydroxyl functional groups. Furthermore, we introduced mercapto-based functional groups by the hydrolysis of mercaptopropylmethyldimethoxysilane (MPMDS) and finally grafted POSS and mercaptans using a thiol–ene click reaction. These processes generated a superhydrophobic fabric with a static contact and a sliding angle of 162° and 8°, respectively. The superhydrophobic fabric’s compact and regular micro-nano rough structure based on POSS and mercaptans provides stable fastness and durability, as well as high resistance to organic solvents, acid–base environments, mechanical abrasion, UV rays, and washing. Moreover, it can be used for self-cleaning and oil–water separation, and it has a wide range of applications in the coating industry

    Synergistic Effects and Mechanism of Modified Silica Sol Flame Retardant Systems on Silk Fabric

    No full text
    The nano-silica sol was prepared by sol-gel method, and the boric acid, urea, cyanoguanidine, melamine cyanurate (MCA), 1-hydroxyethane 1,1-diphosphonic acid (HEDP), and 6H-dibenz (C,E) (1,2) oxaphosphorin-6-oxide (DOPO) were added to the silica sol to modify the flame retardant through physical doping and chemical bonding. According to the formula proposed by Lewin, the calculation of flammability parameters were obtained by the limiting oxygen index meter, the micro calorimeter, the vertical burner, and the thermogravimetric analyzer proved that there was a synergistic or additive effect between the B/N/P flame retardant and the silica sol. Fourier transform infrared (FT-IR) spectrum, scanning electron microscopy, and pyrolysis gas chromatography-mass spectrometry were used to characterize the morphology, structure, and pyrolysis products of treated silk fabric and residues after combustion. The results show that the flame retardancy of silica-boron sol is mainly caused by endothermic reaction and melt covering reaction. Silicon-nitrogen sol acts as a flame retardant through endothermic reaction, release of gases, and melting coverage. Silicon-phosphorus sol achieves flame retardancy by forming an acid to promote formation of a carbon layer and melting coverage. Silica sol and other flame retardants show excellent flame retardanty after compounding, and have certain complementarity, which can balance the dosage, performance, and cost of flame retardants, and is more suitable for industrial development

    Preparation, Structure, and Properties of Silk Fabric Grafted with 2-Hydroxypropyl Methacrylate Using the HRP Biocatalyzed ATRP Method

    No full text
    Atom transfer radical polymerization (ATRP) is a “living”/controlled radical polymerization, which is also used for surface grafting of various materials including textiles. However, the commonly used metal complex catalyst, CuBr, is mildly toxic and results in unwanted color for textiles. In order to replace the transition metal catalyst of surface-initiated ATRP, the possibility of HRP biocatalyst was investigated in this work. 2-hydroxypropyl methacrylate (HPMA) was grafted onto the surface of silk fabric using the horseradish peroxidase (HRP) biocatalyzed ATRP method, which is used to improve the crease resistance of silk fabric. The structure of grafted silk fabric was characterized by Fourier transform infrared spectrum, X-ray photoelectron spectroscopy, thermogravimetic analysis, and scanning electron microscopy. The results showed that HPMA was successfully grafted onto silk fabric. Compared with the control silk sample, the wrinkle recovery property of grafted silk fabric was greatly improved, especially the wet crease recovery property. However, the whiteness, breaking strength, and moisture regain of grafted silk fabric decreased somewhat. The present work provides a novel, biocatalyzed, environmentally friendly ATRP method to obtain functional silk fabric, which is favorable for clothing application and has potential for medical materials

    Dopamine-Dyed and Functionally Finished Silk with Rapid Oxidation Polymerization

    No full text
    Nowadays, more and more attention has been paid to ecological environment problems, and the dyeing and finishing field is no exception. Environmentally friendly dyeing and finishing methods have been extensively studied. Inspired by the bioadhesive force of marine mussels, dopamine (DA) was applied as a dyestuff and investigated in textile dyeing. In this work, dopamine was dyed on silk with a rapid oxidation polymerization in the presence of metal ions (Fe3+) and sodium perborate oxidant (Ox). The polydopamine (PDA) was rapidly deposited on silk fabric and the dyeing process was optimized as follows: the concentration of DA was 2 g·L−1, and that of Fe3+ was 2 mmol·L−1; the total reaction time was 50 min and reacted at 50 °C; 9 mmol·L−1 Ox was added at 20 min. The K/S value of the treated silk fabric reached 11.46. The color fastness of dyed fabric to light fastness reached Level 4. The SEM and AFM tests showed that the particles attached to the fabric surface and increased the roughness. The XPS test further proved that polydopamine (PDA) was deposited on the fabric. The treated fabric also had a good anti-UV property with a UPF >30 and UVA <4%. The water contact angle of treated fabric attained 142.6°, showing better hydrophobicity, and the weft breaking strength was also improved. This environmentally friendly dyeing and finishing method can be applied and extended to other fabrics
    corecore